Genini, Sem

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 6 of 6
  • Publication
    Exclusion of the Unfolded Protein Response in Light-Induced Retinal Degeneration in the Canine T4R RHO Model of Autosomal Dominant Retinitis Pigmentosa
    (2015-02-19) Genini, Sem; Aguirre, Gustavo D; Marsilli, Stefania; Beltran, William; Sudharsan, Raghavi; Gingrich, Jeremy
    Purpose To examine the occurrence of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) following acute light damage in the naturally-occurring canine model of RHO-adRP (T4R RHOdog). Methods The left eyes of T4R RHOdogs were briefly light-exposed and retinas collected 3, 6 and 24 hours later. The contra-lateral eyes were shielded and used as controls. To evaluate the time course of cell death, histology and TUNEL assays were performed. Electron microscopy was used to examine ultrastructural alterations in photoreceptors at 15 min, 1 hour, and 6 hours after light exposure. Gene expression of markers of ER stress and UPR were assessed by RT-PCR, qRT-PCR and western blot at the 6 hour time-point. Calpain and caspase-3 activation were assessed at 1, 3 and 6 hours after exposure. Results A brief exposure to clinically-relevant levels of white light causes within minutes acute disruption of the rod outer segment disc membranes, followed by prominent ultrastructural alterations in the inner segments and the initiation of cell death by 6 hours. Activation of the PERK and IRE1 pathways, and downstream targets (BIP, CHOP) of the UPR was not observed. However increased transcription of caspase-12 and hsp70 occurred, as well as calpain activation, but not that of caspase-3. Conclusion The UPR is not activated in the early phase of light-induced photoreceptor cell death in the T4R RHO model. Instead, disruption in rods of disc and plasma membranes within minutes after light exposure followed by increase in calpain activity and caspase-12 expression suggests a different mechanism of degeneration.
  • Publication
    Up-Regulation of Tumor Necrosis Factor Superfamily Genes in Early Phases of Photoreceptor Degeneration
    (2013-12-19) Genini, Sem; Beltran, William
    We used quantitative real-time PCR to examine the expression of 112 genes related to retinal function and/or belonging to known pro-apoptotic, cell survival, and autophagy pathways during photoreceptor degeneration in three early-onset canine models of human photoreceptor degeneration, rod cone dysplasia 1 (rcd1), X-linked progressive retinal atrophy 2 (xlpra2), and early retinal degeneration (erd), caused respectively, by mutations in PDE6B, RPGRORF15, and STK38L. Notably, we found that expression and timing of differentially expressed (DE) genes correlated with the cell death kinetics. Gene expression profiles of rcd1 and xlpra2 were similar; however rcd1 was more severe as demonstrated by the results of the TUNEL and ONL thickness analyses, a greater number of genes that were DE, and the identification of altered expression that occurred at earlier time points. Both diseases differed from erd, where a smaller number of genes were DE. Our studies did not highlight the potential involvement of mitochondrial or autophagy pathways, but all three diseases were accompanied by the down-regulation of photoreceptor genes, and up-regulation of several genes that belong to the TNF superfamily, the extrinsic apoptotic pathway, and pro-survival pathways. These proteins were expressed by different retinal cells, including horizontal, amacrine, ON bipolar, and Müller cells, and suggest an interplay between the dying photoreceptors and inner retinal cells. Western blot and immunohistochemistry results supported the transcriptional regulation for selected proteins. This study highlights a potential role for signaling through the extrinsic apoptotic pathway in early cell death events and suggests that retinal cells other than photoreceptors might play a primary or bystander role in the degenerative process.
  • Publication
    Photoreceptor Cell Death, Proliferation and Formation of Hybrid Rod/S-Cone Photoreceptors in the Degenerating STK38L Mutant Retina
    (2011-09-30) Boesze-Battaglia, Kathleen; Aguirre, Gustavo D; Genini, Sem; Berta, Ágnes I; Goldstein, Orly; Beltran, William; O'Brien, Paul J; Szél, Ágoston; Acland, Gregory M
    A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene.
  • Publication
    Altered miRNA Expression in Canine Retinas During Normal Development and in Models of Retinal Degeneration
    (2014-01-01) Genini, Sem; Guziewicz, Karina E; Beltran, William A
    Background Although more than 246 loci/genes are associated with inherited retinal diseases, the mechanistic events that link genetic mutations to photoreceptor cell death are poorly understood. miRNAs play a relevant role during retinal development and disease. Thus, as a first step in characterizing miRNA involvement during disease expression and progression, we examined miRNAs expression changes in normal retinal development and in four canine models of retinal degenerative disease. Results The initial microarray analysis showed that 50 miRNAs were differentially expressed (DE) early (3 vs. 7 wks) in normal retina development, while only 2 were DE between 7 and 16 wks, when the dog retina is fully mature. miRNA expression profiles were similar between dogs affected with xlpra2, an early-onset retinal disease caused by a microdeletion in RPGRORF15, and normal dogs early in development (3 wks) and at the peak of photoreceptor death (7 wks), when only 2 miRNAs were DE. However, the expression varied much more markedly during the chronic cell death stage at 16 wks (118 up-/55 down-regulated miRNAs). Functional analyses indicated that these DE miRNAs are associated with an increased inflammatory response, as well as cell death/survival. qRT-PCR of selected apoptosis-related miRNAs (“apoptomirs”) confirmed the microarray results in xlpra2, and extended the analysis to the early-onset retinal diseases rcd1 (PDE6B-mutation) and erd (STK38L-mutation), as well as the slowly progressing prcd (PRCD-mutation). The results showed up-regulation of anti-apoptotic (miR-9, -19a, -20, -21, -29b, -146a, -155, -221) and down-regulation of pro-apoptotic (miR-122, -129) apoptomirs in the early-onset diseases and, with few exceptions, also in the prcd-mutants. Conclusions Our results suggest that apoptomirs might be expressed by diseased retinas in an attempt to counteract the degenerative process. The pattern of expression in diseased retinas mirrored the morphology and cell death kinetics previously described for these diseases. This study suggests that common miRNA regulatory mechanisms may be involved in retinal degeneration processes and provides attractive opportunities for the development of novel miRNA-based therapies to delay the progression of the degenerative process.
  • Publication
    Development and Validation of a Canine-Specific Profiling Array to Examine Expression of Pro-Apoptotic and Pro-Survival Genes in Retinal Degenerative Diseases
    (2012-01-01) Genini, Sem; Beltran, William
    We developed an expression profiling array to examine pro-apoptotic and pro-survival genes in dog retinal degeneration models. Gene-specific canine TaqMan assays were developed and included in a custom real-time quantitative reverse transcription-PCR (qRT-PCR) array. Of the 96 selected genes, 93 belonged to known relevant pro-apoptotic and pro-survival pathways, and/or were positive controls expressed in retina, while three were housekeeping genes. Ingenuity Pathway Analysis (IPA) showed that the selected genes belonged to expected biological functions (cell death, cell-mediated immune response, cellular development, function, and maintenance) and pathways (death receptor signaling, apoptosis, TNFR1 signaling, and induction of apoptosis by HIV1). Validation of the profiling array was performed with RNA extracted from cultured MDCK cells in the presence or absence of treatment with 10 μM staurosporin for 5 or 10 h. The vast majority of the genes showed positive amplifications, and a number of them also had fold change (FC) differences > ±3 between control and staurosporin-treated cells. To conclude, we established a profiling array that will be used to identify differentially expressed genes associated with photoreceptor death or survival in canine models of retinal degenerative diseases with mutations in genes that cause human inherited blindness with comparable phenotypes.
  • Publication
    Photoreceptor Proliferation and Dysregulation of Cell Cycle Genes in Early Onset Inherited Retinal Degenerations
    (2016-03-11) Gardiner, Kristin L; Aguirre, Gustavo D; Downs, Louise; Berta-Antalics, Agnes I; Genini, Sem; Santana, Evelyn
    Background Mitotic terminally differentiated photoreceptors (PRs) are observed in early retinal degeneration (erd), an inherited canine retinal disease driven by mutations in the NDR kinase STK38L (NDR2). Results We demonstrate that a similar proliferative response, but of lower magnitude, occurs in two other early onset disease models, X-linked progressive retinal atrophy 2 (xlpra2) and rod cone dysplasia 1 (rcd1). Proliferating cells are rod PRs, and not microglia or Müller cells. Expression of the cell cycle related genes RB1 and E2F1 as well as CDK2,4,6 was up-regulated, but changes were mutation-specific. Changes in cyclin expression differed across all genes, diseases and time points analyzed, although CCNA1 and CCNE1 expression increased with age in the three models suggesting that there is a dysregulation of cell cycle gene expression in all three diseases. Unique to erd, however, are mutation-specific changes in the expression of NDR kinases and Hippo signaling members with increased expression of MOB1and LATS1 in the newly generated hybrid rod/S-cones. Conclusions Our data raise the intriguing possibility that terminally differentiated normal PRs are kept from dividing by NDR2-MOB1 interaction. Furthermore, they provide the framework for the selection of candidate genes for further investigation as potential targets of therapy.