Stefanovski, Darko

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 10 of 23
  • Publication
    Consistency of the Disposition Index in the Face of Diet Induced Insulin Resistance: Potential Role of FFA
    (2011-03-30) Stefanovski, Darko; Richey, Joyce M; Woolcott, Orison; Lottati, Maya; Zheng, Dan; Harrison, Lisa N; Ionut, Viorica; Kim, Stella P; Hsu, Isabel; Bergman, Richard N
    Objective Insulin resistance induces hyperinsulinemic compensation, which in turn maintains almost a constant disposition index. However, the signal that gives rise to the hyperinsulinemic compensation for insulin resistance remains unknown. Methods In a dog model of obesity we examined the possibility that potential early-week changes in plasma FFA, glucose, or both could be part of a cascade of signals that lead to compensatory hyperinsulinemia induced by insulin resistance. Results Hypercaloric high fat feeding in dogs resulted in modest weight gain, and an increase in adipose tissue with no change in the non-adipose tissue size. To compensate for the drop in insulin sensitivity, there was a significant rise in plasma insulin, which can be attributed in part to a decrease in the metabolic clearance rate of insulin and increased insulin secretion. In this study we observed complete compensation for high fat diet induced insulin resistance as measured by the disposition index. The compensatory hyperinsulinemia was coupled with significant changes in plasma FFAs and no change in plasma glucose. Conclusions We postulate that early in the development of diet induced insulin resistance, a change in plasma FFAs may directly, through signaling at the level of β-cell, or indirectly, by decreasing hepatic insulin clearance, result in the observed hyperinsulinemic compensation.
  • Publication
    A Better Index of Body Adiposity
    (2011-05-01) Bergman, Richard N; Stefanovski, Darko; Buchanan, Thomas A; Sumner, Anne E; Reynolds, James C; Sebring, Nancy G; Xiang, Anny H; Watanabe, Richard M
    Obesity is a growing problem in the United States and throughout the world. It is a risk factor for many chronic diseases. The BMI has been used to assess body fat for almost 200 years. BMI is known to be of limited accuracy, and is different for males and females with similar %body adiposity. Here, we define an alternative parameter, the body adiposity index (BAI = ((hip circumference)/((height)1.5)–18)). The BAI can be used to reflect %body fat for adult men and women of differing ethnicities without numerical correction. We used a population study, the “BetaGene” study, to develop the new index of body adiposity. %Body fat, as measured by the dual-energy X-ray absorptiometry (DXA), was used as a “gold standard” for validation. Hip circumference (R = 0.602) and height (R = −0.524) are strongly correlated with %body fat and therefore chosen as principal anthropometric measures on which we base BAI. The BAI measure was validated in the “Triglyceride and Cardiovascular Risk in African-Americans (TARA)” study of African Americans. Correlation between DXA-derived %adiposity and the BAI was R = 0.85 for TARA with a concordance of C_b = 0.95. BAI can be measured without weighing, which may render it useful in settings where measuring accurate body weight is problematic. In summary, we have defined a new parameter, the BAI, which can be calculated from hip circumference and height only. It can be used in the clinical setting even in remote locations with very limited access to reliable scales. The BAI estimates %adiposity directly.
  • Publication
    MINMOD Millennium: A Computer Program to Calculate Glucose Effectiveness and Insulin Sensitivity From the Frequently Sampled Intravenous Glucose Tolerance Test
    (2004-07-05) Boston, Ray C; Stefanovski, Darko; Moate, Peter J; Sumner, Anne E; Watanabe, Richard M; Bergman, Richard N
    The Bergman Minimal Model enables estimation of two key indices of glucose/insulin dynamics: glucose effectiveness and insulin sensitivity. In this paper we describe MINMOD Millennium, the latest Windows-based version of minimal model software. Extensive beta testing of MINMOD Millennium has shown that it is user-friendly, fully automatic, fast, accurate, reproducible, repeatable, and highly concordant with past versions of MINMOD. It has a simple interface, a comprehensive help system, an input file editor, a file converter, an intelligent processing kernel, and a file exporter. It provides publication-quality charts of glucose and insulin and a table of all minimal model parameters and their error estimates. In contrast to earlier versions of MINMOD and some other minimal model programs, Millennium provides identified estimates of insulin sensitivity and glucose effectiveness for almost every subject.
  • Publication
    Exogenous Glucose Administration Impairs Glucose Tolerance and Pancreatic Insulin Secretion During Acute Sepsis in Non-Diabetic Mice
    (2013-06-24) Watanabe, Yoshio; Singamsetty, Srikanth; Zou, Baobo; Guo, Lanping; Stefanovski, Darko; Alonso, Laura C; Garcia-Ocana, Adolfo; O'Donnell, Christopher P; McVerry, Bryan J
    Objectives The development of hyperglycemia and the use of early parenteral feeding are associated with poor outcomes in critically ill patients. We therefore examined the impact of exogenous glucose administration on the integrated metabolic function of endotoxemic mice using our recently developed frequently sampled intravenous glucose tolerance test (FSIVGTT). We next extended our findings using a cecal ligation and puncture (CLP) sepsis model administered early parenteral glucose support. Methods Male C57BL/6J mice, 8-12 weeks, were instrumented with chronic indwelling arterial and venous catheters. Endotoxemia was initiated with intra-arterial lipopolysaccharide (LPS; 1 mg/kg) in the presence of saline or glucose infusion (100 µL/hr), and an FSIVGTT was performed after five hours. In a second experiment, catheterized mice underwent CLP and the impact of early parenteral glucose administration on glucose homeostasis and mortality was assessed over 24 hrs. Measurements And MAIN RESULTS: Administration of LPS alone did not impair metabolic function, whereas glucose administration alone induced an insulin sensitive state. In contrast, LPS and glucose combined caused marked glucose intolerance and insulin resistance and significantly impaired pancreatic insulin secretion. Similarly, CLP mice receiving parenteral glucose developed fulminant hyperglycemia within 18 hrs (all > 600 mg/dl) associated with increased systemic cytokine release and 40% mortality, whereas CLP alone (85 ± 2 mg/dL) or sham mice receiving parenteral glucose (113 ± 3 mg/dL) all survived and were not hyperglycemic. Despite profound hyperglycemia, plasma insulin in the CLP glucose-infused mice (3.7 ± 1.2 ng/ml) was not higher than sham glucose infused mice (2.1 ± 0.3 ng/ml). Conclusions The combination of parenteral glucose support and the systemic inflammatory response in the acute phase of sepsis induces profound insulin resistance and impairs compensatory pancreatic insulin secretion, leading to the development of fulminant hyperglycemia.
  • Publication
    OGTT-Derived Measures of Insulin Sensitivity Are Confounded by Factors Other Than Insulin Sensitivity Itself
    (2012-09-06) Hücking, Katrin; Watanabe, Richard M; Stefanovski, Darko; Bergman, Richard N
    Insulin resistance is an important risk factor for diabetes and other diseases. It has been important to estimate insulin resistance in epidemiological and genetic studies involving significant number of individuals. Complex and invasive protocols are impractical. Therefore, insulin sensitivity indices based on the oral glucose-tolerance test (OGTT) have been introduced. The aim of the present study was to assess the accuracy with which OGTT-derived indices would reflect changes in insulin sensitivity in the face of changes in other factors, such as rate of glucose absorption and/or B-cell function. A computer model was employed to predict excursions of plasma glucose and insulin after a 75-g oral glucose load. The model was then used to predict changes in these excursions, which would be observed with altered insulin resistance, with alterations in β-cell sensitivity to glucose and/or alterations in glucose absorption rates. Published indices of insulin sensitivity could then be calculated from the predicted curves, to ask whether changes in β-cell function or glucose absorptions rates might be misinterpreted (using the indices) as changes in insulin sensitivity. The model accurately represented OGTT data for a normal glucose tolerant subject, closely matching published data. Imposed 50% reductions or increases in insulin sensitivity alone in the model were reflected in only small changes in OGTT-derived insulin sensitivity values. More important, imposed alterations in β-cell sensitivity and glucose absorption without simulated changes in insulin sensitivity did change insulin sensitivity indices. These results indicate that caution is required for the interpretation of differences in OGTT-derived values of insulin sensitivity, because variation in factors other than insulin sensitivity per se appear to have the greatest effects on indices calculated from the OGTT alone.
  • Publication
    Non-Equilibrium Dynamics Contribute to Ion Selectivity in the KcsA Channel
    (2014-01-17) Ngo, Van; Stefanovski, Darko; Haas, Stephan; Farley, Robert A
    The ability of biological ion channels to conduct selected ions across cell membranes is critical for the survival of both animal and bacterial cells. Numerous investigations of ion selectivity have been conducted over more than 50 years, yet the mechanisms whereby the channels select certain ions and reject others are not well understood. Here we report a new application of Jarzynski’s Equality to investigate the mechanism of ion selectivity using non-equilibrium molecular dynamics simulations of Na+ and K+ ions moving through the KcsA channel. The simulations show that the selectivity filter of KcsA adapts and responds to the presence of the ions with structural rearrangements that are different for Na+ and K+. These structural rearrangements facilitate entry of K+ ions into the selectivity filter and permeation through the channel, and rejection of Na+ ions. A mechanistic model of ion selectivity by this channel based on the results of the simulations relates the structural rearrangement of the selectivity filter to the differential dehydration of ions and multiple-ion occupancy and describes a mechanism to efficiently select and conduct K+. Estimates of the K+/Na+ selectivity ratio and steady state ion conductance for KcsA from the simulations are in good quantitative agreement with experimental measurements. This model also accurately describes experimental observations of channel block by cytoplasmic Na+ ions, the “punch through” relief of channel block by cytoplasmic positive voltages, and is consistent with the knock-on mechanism of ion permeation.
  • Publication
    Components of Metabolic Syndrome and 5-Year Chance in Insulin Clearance - The Resistance Atherosclerosis Study (IRAS)
    (2013-05-15) Lee, C. Christine; Lorenzo, Carlos; Haffner, Steven M; Wagenknecht, Lynne E; Goodarzi, Mark O; Stefanovski, Darko; Norris, Jill M; Rewers, Marian J; Hanley, Anthony J
    Aims Cross-sectional evidence indicates that abdominal adiposity, hypertension, dyslipidaemia and glycaemia are associated with reduced metabolic clearance rate of insulin (MCRI). Little is known about the progression of MCRI and whether components of metabolic syndrome are associated with the change in MCRI. In this study, we examined the association between components of metabolic syndrome and the 5-year change of MCRI. Methods At baseline and 5-year follow-up, we measured fasting plasma triglycerides (TG), high-density lipoprotein (HDL) cholesterol, blood pressure (BP), waist circumference (WC) and fasting blood glucose (FBG) in 784 non-diabetic participants in the Insulin Resistance Atherosclerosis Study. MCRI, insulin sensitivity (SI) and acute insulin response (AIR) were determined from frequently sampled intravenous glucose tolerance tests. Results We observed a 29% decline of MCRI at follow-up. TG, systolic BP and WC at baseline were inversely associated with a decline of MCRI regression models adjusted for age, sex, ethnicity, smoking, alcohol consumption, energy expenditure, family history of diabetes, BMI, SI and AIR [β = −0.057 (95% confidence interval, CI: −0.11, −0.0084) for TG, β = −0.0019 (95% CI: −0.0035, −0.00023) for systolic BP and β  = −0.0084 (95% CI: −0.013, −0.0039) for WC; all p < 0.05]. Higher HDL cholesterol at baseline was associated with an increase in MCRI [multivariable-adjusted β = 0.0029 (95% CI: 0.0010, 0.0048), p = 0.002]. FBG at baseline was not associated with MCRI at follow-up [multivariable-adjusted β = 0.0014 (95% CI: −0.0026, 0.0029)]. Conclusions MCRI declined progressively over 5 years in a non-diabetic cohort. Components of metabolic syndrome at baseline were associated with a significant change in MCRI.
  • Publication
    Overview of Modeling with WinSAAM
    (2020-10-22) Stefanovski, Darko; Boston, Raymond
    Demonstrations of some basic WinSAAM models reflecting how common problems are addressed.
  • Publication
    Protocol and Response Specification for PK Systems
    (2020-11-19) Stefanovski, Darko; Boston, Raymond
    This session: Surgeons, anesthetists, and nutritionists all need access to PK/PD tools to help plan and interpret clinical interventions. The WinSAAM software has convincingly demonstrated its facility here where we have solved the 200 or so Kinetic Investigations in the book Pharmacokinetic & pharmacodynamic data analysis : concepts and applications by Gabrielsson and Weiner (4th Edn.).
  • Publication
    Infectious Diseases Modeled with WinSAAM
    (2020-12-17) Stefanovski, Darko; Boston, Raymond
    This session: Infectious Disease Epidemics. Never has the time been more poised for the exploitation of models to follow, monitor, and control the spread of infectious diseases. Here we show how variants of the SIR model (attributable to Kermack, and McKendrick, 1927) can be explored and manipulated using just 2 or 3 WinSAAM modeling constructs.