Zdancewic, Stephan A
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 10 of 45
Publication Combining Events And Threads For Scalable Network Services: Implementation And Evaluation Of Monadic, Application-level Concurrency Primitives(2007-06-01) Li, Peng; Zdancewic, Stephan AThis paper proposes to combine two seemingly opposed programming models for building massively concurrent network services: the event-driven model and the multithreaded model. The result is a hybrid design that offers the best of both worlds—the ease of use and expressiveness of threads and the flexibility and performance of events. This paper shows how the hybrid model can be implemented entirely at the application level using concurrency monads in Haskell, which provides type-safe abstractions for both events and threads. This approach simplifies the development of massively concurrent software in a way that scales to real-world network services. The Haskell implementation supports exceptions, symmetrical multiprocessing, software transactional memory, asynchronous I/O mechanisms and application-level network protocol stacks. Experimental results demonstrate that this monad-based approach has good performance: the threads are extremely lightweight (scaling to ten million threads), and the I/O performance compares favorably to that of Linux NPTL.Publication A Type-theoretic Interpretation of Pointcuts and Advice(2006-01-31) Ligatti, Jay; Walker, David; Zdancewic, Stephan AThis paper defines the semantics of MinAML, an idealized aspect-oriented programming language, by giving a type-directed translation from a user-friendly external language to a compact, well-defined core language. We argue that our framework is an effective way to give semantics to aspect-oriented programming languages in general because the translation eliminates shallow syntactic differences between related constructs and permits definition of a simple and elegant core language. The core language extends the simply-typed lambda calculus with two central new abstractions: explicitly labeled program points and first-class advice. The labels serve both to trigger advice and to mark continuations that the advice may return to. These constructs are defined orthogonally to the other features of the language and we show that our abstractions can be used in both functional and object-oriented contexts. We prove Preservation and Progress lemmas for our core language and show that the translation from MinAML source into core is type-preserving. We also consider several extensions to our basic framework including a general mechanism for analyzing the current call stack.Publication CETS: Compiler Enforced Temporal Safety for C(2010-06-01) Nagarakatte, Santosh; Martin, Milo; Zhao, Jianzhou; Zdancewic, Stephan ATemporal memory safety errors, such as dangling pointer dereferences and double frees, are a prevalent source of software bugs in unmanaged languages such as C. Existing schemes that attempt to retrofit temporal safety for such languages have high runtime overheads and/or are incomplete, thereby limiting their effectiveness as debugging aids. This paper presents CETS, a compile-time transformation for detecting all violations of temporal safety in C programs. Inspired by existing approaches, CETS maintains a unique identifier with each object, associates this metadata with the pointers in a disjoint metadata space to retain memory layout compatibility, and checks that the object is still allocated on pointer dereferences. A formal proof shows that this is sufficient to provide temporal safety even in the presence of arbitrary casts if the program contains no spatial safety violations. Our CETS prototype employs both temporal check removal optimizations and traditional compiler optimizations to achieve a runtime overhead of just 48% on average. When combined with a spatial-checking system, the average overall overhead is 116% for complete memory safety.Publication Ironclad C++: A Library-Augmented Type-Safe Subset of C++(2013-03-28) DeLozier, Christian; Eisenberg, Richard A.; Nagarakatte, Santosh; Osera, Peter-Michael; Martin, Milo; Zdancewic, Stephan AC++ remains a widely used programming language, despite retaining many unsafe features from C. These unsafe features often lead to violations of type and memory safety, which manifest as buffer overflows, use-after-free vulnerabilities, or abstraction violations. Malicious attackers are able to exploit such violations to compromise application and system security. This paper introduces Ironclad C++, an approach to bring the benefits of type and memory safety to C++. Ironclad C++ is, in essence, a library-augmented type-safe subset of C++. All Ironclad C++ programs are valid C++ programs, and thus Ironclad C++ programs can be compiled using standard, off-the-shelf C++ compilers. However, not all valid C++ programs are valid Ironclad C++ programs. To determine whether or not a C++ program is a valid Ironclad C++ program, Ironclad C++ uses a syntactic source code validator that statically prevents the use of unsafe C++ features. For properties that are difficult to check statically Ironclad C++ applies dynamic checking to enforce memory safety using templated smart pointer classes. Drawing from years of research on enforcing memory safety, Ironclad C++ utilizes and improves upon prior techniques to significantly reduce the overhead of enforcing memory safety in C++. To demonstrate the effectiveness of this approach, we translate (with the assistance of a semi-automatic refactoring tool) and test a set of performance benchmarks, multiple bug-detection suites, and the open-source database leveldb. These benchmarks incur a performance overhead of 12% on average as compared to the unsafe original C++ code, which is small compared to prior approaches for providing comprehensive memory safety in C and C++.Publication Enforcing Robust Declassification(2004-06-28) Myers, Andrew C; Sabelfeld, Andrei; Zdancewic, Stephan A.Noninterference requires that there is no information flow from sensitive to public data in a given system. However, many systems perform intentional release of sensitive information as part of their correct functioning and therefore violate noninterference. To control information flow while permitting intentional information release, some systems have a downgrading or declassification mechanism. A major danger of such a mechanism is that it may cause unintentional information release. This paper shows that a robustness property can be used to characterize programs in which declassification mechanisms cannot be exploited by attackers to release more information than intended. It describes a simple way to provably enforce this robustness property through a type-based compile-time program analysis. The paper also presents a generalization of robustness that supports upgrading (endorsing) data integrity.Publication Updatable Security Views(2009-07-08) Foster, John Nathan; Pierce, Benjamin C; Zdancewic, Stephan ASecurity views are a flexible and effective mechanism for controlling access to confidential information. Rather than allowing untrusted users to access source data directly, they are instead provided with are restricted view, from which all confidential information has been removed. The program that generates the view effectively embodies a confidentiality policy for the underlying source data. However, this approach has a significant drawback: it prevents users from updating the data in the view. To address the "view update problem" in general, a number of bidirectional languages have been proposed. Programs in these languages - often called lenses - can be run in two directions: read from left to right, they map sources to views; from right to left,they map updated views back to updated sources. However, existing bidirectional languages do not deal adequately with security. In particular, they do not provide a way to ensure the integrity of source data as it is manipulated by untrusted users of the view. We propose a novel framework of secure lenses that addresses these shortcomings. We enrich the types of basic lenses with equivalence relations capturing notions of confidentiality and integrity, and formulate the essential security conditions as non-interference properties. We then instantiate this framework in the domain of string transformations, developing syntax for bidirectional string combinators with security-annotated regular expressions as their types.Publication Run-time Principals in Information-flow Type Systems(2004-05-01) Tse, Stephen; Zdancewic, Stephan AInformation-flow type systems are a promising approach for enforcing strong end-to-end confidentiality and integrity policies. Such policies, however, are usually specified in term of static information—data is labeled high or low security at compile time. In practice, the confidentiality of data may depend on information available only while the system is running. This paper studies language support for run-time principals, a mechanism for specifying information-flow security policies that depend on which principals interact with the system. We establish the basic property of noninterference for programs written in such language, and use run-time principals for specifying run-time authority in downgrading mechanisms such as declassification. In addition to allowing more expressive security policies, run-time principals enable the integration of language-based security mechanisms with other existing approaches such as Java stack inspection and public key infrastructures. We sketch an implementation of run-time principals via public keys such that principal delegation is verified by certificate chains.Publication Dynamic updating of information-flow policies(2005-01-01) Zdancewic, Stephan A; Hicks, Michael; Tse, Stephen; Hicks, BonifaceApplications that manipulate sensitive information should ensure end-to-end security by satisfying two properties: sound execution and some form of noninterference. By the former, we mean the program should always perform actions in keeping with its current policy, and by the latter we mean that these actions should never cause high-security information to be visible to a low-security observer. Over the last decade, security-typed languages have been developed that exhibit these properties, increasingly improving so as to model important features of real programs. No current security-typed language, however, permits general changes to security policies in use by running programs. This paper presents a simple information flow type system for that allows for dynamic security policy updates while ensuring sound execution and a relaxed form of noninterference we term noninterference between updates. We see this work as an important step toward using language-based techniques to ensure end-to-end security for realistic applications.Publication AURA: Preliminary Technical Results(2008-04-17) Jia, Limin; Vaughan, Jeffrey A; Mazurak, Karl; Zhao, Jianzhou; Zarko, Luke; Schorr, Joseph; Zdancewic, Stephan AThis paper presents AURA, a programming language for access control that treats ordinary programming constructs (e.g., integers and recursive functions) and authorization logic constructs (e.g., principals and access control policies) in a uniform way. AURA is based on polymorphic DCC and uses dependent types to permit assertions that refer directly to AURA values while keeping computation out of the assertion level to ensure tractability. The main technical results of this paper include fully mechanically verified proofs of the decidability and soundness for AURA's type system, and a prototype typechecker and interpreter.Publication HardBound: Architectural Support for Spatial Safety of the C Programming Language(2008-03-01) Devietti, Joe; Martin, Milo; Blundell, Colin; Zdancewic, Stephan AThe C programming language is at least as well known for its absence of spatial memory safety guarantees (i.e., lack of bounds checking) as it is for its high performance. C's unchecked pointer arithmetic and array indexing allow simple programming mistakes to lead to erroneous executions, silent data corruption, and security vulnerabilities. Many prior proposals have tackled enforcing spatial safety in C programs by checking pointer and array accesses. However, existing software-only proposals have significant drawbacks that may prevent wide adoption, including: unacceptably high runtime overheads, lack of completeness, incompatible pointer representations, or need for non-trivial changes to existing C source code and compiler infrastructure. Inspired by the promise of these software-only approaches, this paper proposes a hardware bounded pointer architectural primitive that supports cooperative hardware/software enforcement of spatial memory safety for C programs. This bounded pointer is a new hardware primitive datatype for pointers that leaves the standard C pointer representation intact, but augments it with bounds information maintained separately and invisibly by the hardware. The bounds are initialized by the software, and they are then propagated and enforced transparently by the hardware, which automatically checks a pointer's bounds before it is dereferenced. One mode of use requires instrumenting only malloc, which enables enforcement of per-allocation spatial safety for heap-allocated objects for existing binaries. When combined with simple intra-procedural compiler instrumentation, hardware bounded pointers enable a low-overhead approach for enforcing complete spatial memory safety in unmodified C programs.