Qi, Liang
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 3 of 3
Publication Multiscale Modeling of Electrocatalysis(2009-08-14) Qi, LiangIn proton-exchange-membrane (PEM) fuel cells, electrochemical oxygen reduction reaction (ORR) on the cathode is a critical step at which large energy loss occurs. Theoretical tools at different scales are discussed in this thesis in order to find ORR catalysts with both higher activity and better durability than current Pt and Pt alloys. For catalytic activity, a relatively simple model reaction, ORR by hydrogen molecule under ultra-high-vacuum (UHV) conditions, is studied by first-principles methods on various metallic surfaces, which shows that good catalytic activities of Pt and its alloys originate from moderate adsorption strengths for atoms and molecules involved in the reaction. Then first-principles methods are also applied to study the reaction mechanisms of electrochemical ORR: detailed analyses in the electronic structures of ORR intermediates confirm that all the electron transfers in ORR occur through proton-coupled electron transfer (PCET) mechanism, which is accomplished by proton transfer along hydrogen-bond network from hydrated proton (hydronium) to ORR intermediates on the surface. Furthermore, first-principles methods are also used to search and design new alloy surfaces with optimal activity based on a simple kinetic model. However, the inaccuracy of this simple model makes a comprehensive multiscale ORR model necessary. Thus, a reaction network of ORR elementary steps on limited surface sites is built, and the steady-state solutions provide current density j at given electrode potential U; then a multiscale model of electrode-electrolyte interfacial structure is proposed for function U (σM), where σM is excess surface electron density on metallic electrode; finally, we discuss the principles to achieve a self-consistent multiscale ORR model to output both U and current I to the external circuit. For the stability of Pt as catalyst, we study its surface oxide formation and surface adatom diffusion, which result in the corrosion and coarsening of Pt nanocrystals respectively. It is found that different anti-corrosion stabilities of Pt facets can be explained by their maximum abilities to keep oxygen atoms adsorbed on the top surface layer, and Pt adatom diffusion barriers change with the surface coverage conditions at different U.Publication Quasiatomic orbitals for ab initio tight-binding analysis(2008-12-16) Li, Ju; Qian, Xiaofeng; Qi, Liang; Wang, Cai-Zhuang; Chan, Tzu-Liang; Yao, Yong-Xin; Ho, Kai-Ming; Yip, SidneyWave functions obtained from plane-wave density-functional theory (DFT) calculations using norm-conserving pseudopotential, ultrasoft pseudopotential, or projector augmented-wave method are efficiently and robustly transformed into a set of spatially localized nonorthogonal quasiatomic orbitals (QOs) with pseudoangular momentum quantum numbers. We demonstrate that these minimal-basis orbitals can exactly reproduce all the electronic structure information below an energy threshold represented in the form of environment-dependent tight-binding Hamiltonian and overlap matrices. Band structure, density of states, and the Fermi surface are calculated from this real-space tight-binding representation for various extended systems (Si, SiC, Fe, and Mo) and compared with plane-wave DFT results. The Mulliken charge and bond order analyses are performed under QO basis set, which satisfy sum rules. The present work validates the general applicability of Slater and Koster's scheme of linear combinations of atomic orbitals and points to future ab initio tight-binding parametrizations and linear-scaling DFT development.Publication Geometric and Electronic Structure of Graphene Bilayer Edges(2010-10-09) Feng, Ji; Qi, Liang; Li, Ju; Huang, Jian YuWe present a computational investigation of free-standing graphene bilayer edge (BLE) structures, aka “fractional nanotubes.” We demonstrate that these curved carbon nanostructures possess a number of interesting properties, electronic in origin. The BLEs, quite atypical of elemental carbon, have large permanent electric dipoles of 0.87 and 1.14 debye/Å for zigzag and armchair inclinations, respectively. An unusual, weak AA interlayer coupling leads to a twinned double-cone dispersion of the electronic states near the Dirac points. This entails a type of quantum Hall behavior markedly different from what has been observed in graphenebased materials, characterized by a magnetic field-dependent resonance in the Hall conductivity.