Li, Ju

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 10 of 20
  • Publication
    Hydrostatic compression and high-pressure elastic constants of coesite silica
    (2008-03-06) Ogata, Shigenobu; Kimizuka, Hajime; Li, Ju
    Using density-functional theory, we computed all the independent elastic constants of coesite, a high-pressure polymorph of silica, as functions of pressure up to 15 GPa. The results are in good agreement with experimental measurements under ambient conditions. Also, the predicted pressure-dependent elastic properties are consistent with x-ray data in the literature concerning lattice strains at high pressures. We find that coesite, like quartz, exhibits a gradual softening of a shear modulus B44 with increasing pressure, in contrast to the rising bulk modulus.
  • Publication
    Thermochemical and Mechanical Stabilities of the Oxide Scale of ZrB2+SiC and Oxygen Transport Mecha
    (2008-05-01) Li, Ju; Lenosky, Thomas J; Först, Clemens J; Yip, Sidney
    Refractory diboride with silicon carbide additive has a unique oxide scale microstructure with two condensed oxide phases (solid+liquid), and demonstrates oxidation resistance superior to either monolithic diboride or silicon carbide. We rationalize that this is because the silica-rich liquid phase can retreat outward to remove the high SiO gas volatility region, while still holding onto the zirconia skeleton mechanically by capillary forces, to form a "solid pillars, liquid roof" scale architecture and maintain barrier function. Basic assessment of the oxygen carriers in the borosilicate liquid in oxygen-rich condition is performed using first-principles calculations. It is estimated from entropy and mobility arguments that above a critical temperature Tc~1500°C, the dominant oxygen carriers should be network defects, such as peroxyl linkage or oxygen-deficient centers, instead of molecular O2* as in the Deal–Grove model. These network defects will lead to sublinear dependence of the oxidation rate with external oxygen partial pressure. The present work suggests that there could be significant room in improving the high-temperature oxidation resistance by refining the oxide scale microstructure as well as controlling the glass chemistry.
  • Publication
    Pressure-temperature phase diagram for shapes of vesicles: A coarse-grained molecular dynamics study
    (2009-10-06) Liu, Ping; Li, Ju; Zhang, Yong-wei
    Coarse-grained molecular dynamics simulations are performed to obtain the phase diagram for shapes of a vesicle with a variation in temperature and pressure difference across the membrane. Various interesting vesicle shapes are found, in particular, a series of shape transformations are observed for a vesicle with an initial spherical shape, which changes to a prolate shape, then an oblate shape, and then a stomatocyte shape, with either increasing temperature or decreasing pressure difference across the membrane.
  • Publication
    Variable Nanoparticle-Cell Adhesion Strength Regulates Cellular Uptake
    (2010-09-21) Yuan, Hongyan; Li, Ju; Bao, Gang; Zhang, Sulin
    In receptor-mediated endocytosis, cells exercise biochemical control over the mechanics of adhesion to engulf foreign particles, featuring a variable adhesion strength. Here we present a thermodynamic model with which we elucidate that the variable adhesion strength critically governs the cellular uptake, yielding an uptake phase diagram in the space of ligand density and particle size. We identify from the diagram an endocytosed phase with markedly high uptake, encompassed by a lower and an upper phase boundary that are set, respectively, by the enthalpic and entropic limits of the adhesion strength. The phase diagram may provide useful guidance to the rational design of nanoparticle-based therapeutic and diagnostic agents.
  • Publication
    Plastic flow and failure resistance of metallic glass: Insight from in situ compression of nanopillars
    (2008-04-14) Shan, Z. W; Li, Ju; Cheng, Y. Q; Minor, A. M.; Syed Asif, S. A; Warren, O. L.; Ma, E.
    We report in situ nanocompression tests of Cu-Zr-Al metallic glass (MG) pillars in a transmission electron microscope. This technique is capable of spatially and temporally resolving the plastic flow in MGs. The observations reveal the intrinsic ability of fully glassy MGs to sustain large plastic strains, which would otherwise be preempted by catastrophic instability in macroscopic samples and conventional tests. The high ductility in volume-limited MGs and the sample size effects in suppressing the rapid failure common to MGs are analyzed by modeling the evolution of the collectivity of flow defects toward localization.
  • Publication
    One-particle-thick, Solvent-free, Course-grained Model for Biological and Biomimetic Fluid Membranes
    (2010-07-12) Yuan, Hongyan; Huang, Changjin; Li, Ju; Lykotrafitis, George; Zhang, Sulin
    Biological membranes are involved in numerous intriguing biophysical and biological cellular phenomena of different length scales, ranging from nanoscale raft formation, vesiculation, to microscale shape transformations. With extended length and time scales as compared to atomistic simulations, solvent-free coarse-grained membrane models have been exploited in mesoscopic membrane simulations. In this study, we present a one-particle-thick fluid membrane model, where each particle represents a cluster of lipid molecules. The model features an anisotropic interparticle pair potential with the interaction strength weighed by the relative particle orientations. With the anisotropic pair potential, particles can robustly self-assemble into fluid membranes with experimentally relevant bending rigidity. Despite its simple mathematical form, the model is highly tunable. Three potential parameters separately and effectively control diffusivity, bending rigidity, and spontaneous curvature of the model membrane. As demonstrated by selected examples, our model can naturally simulate dynamics of phase separation in multicomponent membranes and the topological change of fluid vesicles.
  • Publication
    Computing the Viscosity of Supercooled Liquids
    (2009-06-11) Kushima, Akihiro; Lin, Xi; Li, Ju; Eapen, Jacob; Mauro, John C.; Qian, Xiafeng; Diep, Phong; Yip, Sidney
    We describe an atomistic method for computing the viscosity of highly viscous liquids based on activated state kinetics. A basin-filling algorithm allowing the system to climb out of deep energy minima through a series of activation and relaxation is proposed and first benchmarked on the problem of adatom diffusion on a metal surface. It is then used to generate transition state pathway trajectories in the potential energy landscape of a binary Lennard-Jones system. Analysis of a sampled trajectory shows the system moves from one deep minimum to another by a process that involves high activation energy and the crossing of many local minima and saddle points. To use the trajectory data to compute the viscosity we derive a Markov Network model within the Green–Kubo formalism and show that it is capable of producing the temperature dependence in the low-viscosity regime described by molecular dynamics simulation, and in the high-viscosity regime (102–1012 Pa s) shown by experiments on fragile glass-forming liquids. We also derive a mean-field-like description involving a coarse-grained temperature-dependent activation barrier, and show it can account qualitatively for the fragile behavior. From the standpoint of molecular studies of transport phenomena this work provides access to long relaxation time processes beyond the reach of current molecular dynamics capabilities. In a companion paper we report a similar study of silica, a representative strong liquid. A comparison of the two systems gives insight into the fundamental difference between strong and fragile temperature variations.
  • Publication
    Geometric and Electronic Structure of Graphene Bilayer Edges
    (2010-10-09) Feng, Ji; Qi, Liang; Li, Ju; Huang, Jian Yu
    We present a computational investigation of free-standing graphene bilayer edge (BLE) structures, aka “fractional nanotubes.” We demonstrate that these curved carbon nanostructures possess a number of interesting properties, electronic in origin. The BLEs, quite atypical of elemental carbon, have large permanent electric dipoles of 0.87 and 1.14 debye/Å for zigzag and armchair inclinations, respectively. An unusual, weak AA interlayer coupling leads to a twinned double-cone dispersion of the electronic states near the Dirac points. This entails a type of quantum Hall behavior markedly different from what has been observed in graphenebased materials, characterized by a magnetic field-dependent resonance in the Hall conductivity.
  • Publication
    Adaptive Strain-Boost Hyperdynamics Simulations of Stress-Driven Atomic Processes
    (2010-11-19) Hara, Shotaro; Li, Ju
    The deformation and failure phenomena of materials are the results of stress-driven, thermally activated processes at the atomic scale. Molecular-dynamics (MD) simulations can only span a very limited time range which hinders one from gaining full view of the deformation physics. Inspired by the Eshelby transformation formalism, we present here a transformation “strain-boost” method for accelerating atomistic simulations, which is often more efficient and robust than the bond-boost hyperdynamics method [R. A. Miron and K. A. Fichthorn, J. Chem. Phys. 119, 6210 (2003)] for exploring collective stress-driven processes such as dislocation nucleation, that have characteristic activation volumes larger than one atomic volume. By introducing an adaptive algorithm that safely maximizes the boost factor, we directly access the finite-temperature dynamical process of dislocation nucleation in compressed Cu nanopillar over time scale comparable to laboratory experiments. Our method provides stress- and temperature-dependent activation enthalpy, activation entropy and activation volume for surface-dislocation nucleation with no human guidance about crystallography or deformation physics. Remarkably, the accelerated MD results indicate that harmonic transition-state theory and the empirical Meyer-Neldel compensation rule give reasonable approximations of the dislocation nucleation rate.
  • Publication
    Toughness Scale from First Principles
    (2009-12-14) Ogata, Shigenobu; Li, Ju
    We correlate the experimentally measured fracture toughness of 24 metals and ceramics to their quantum mechanically calculated brittleness parameter. The brittleness parameter is defined as the ratio of the elastic energy density needed to spontaneously break bonds in shear versus in tension, and is a primitive-cell property. Under 300 GPa hydrostatic pressure, the model predicts that diamond has smaller brittleness than molybdenum at zero pressure, and thus should deform plastically without cracking at room temperature.