Eckmann, David M.
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 8 of 8
Publication Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects(2008-09-01) Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S; Eckmann, David MWe have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model - a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ΡlUmaxd/µapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, Ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and µapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9 ≤ λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the "endothelial cell" (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → - → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble; (iv) computed magnitudes of shear stress gradients coupled with their sign reversals may correspond to levels that cause injury to the cell by membrane disruption through impulsive compression and stretching; and (v) for the vessel sizes and flow rates investigated, gravitational effects are negligible.Publication Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder(2007-09-01) Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S; Eckmann, David M; Quan, ShaopingThe wall effects on the axisymmetric rise and deformation of an initially spherical gas bubble released from rest in a liquid-filled, finite circular cylinder are numerically investigated. The bulk and gas phases are considered incompressible and immiscible. The bubble motion and deformation are characterized by the Morton number Mo, Eötvös number Eo, Reynolds number Re, Weber number We, density ratio, viscosity ratio, the ratios of the cylinder height and the cylinder radius to the diameter of the initially spherical bubble (H* =H/d0, R*=R/d0). Bubble rise in liquids described by Eo and Mo combinations ranging from (1,0.01) to (277.5,0.092), as appropriate to various terminal state Reynolds numbers (ReT) and shapes have been studied. The range of terminal state Reynolds numbers includes 0.02T<70. Bubble shapes at terminal states vary from spherical to intermediate spherical-cap–skirted. The numerical procedure employs a front tracking finite difference method coupled with a level contour reconstruction of the front. This procedure ensures a smooth distribution of the front points and conserves the bubble volume. For the wide range of Eo and Mo examined, bubble motion in cylinders of height H*=8 and R≥3, is noted to correspond to the rise in an infinite medium, both in terms of Reynolds number and shape at terminal state. In a thin cylindrical vessel (small R*) the motion of the bubble is retarded due to increased total drag and the bubble achieves terminal conditions within a short distance from release. The wake effects on bubble rise are reduced, and elongated bubbles may occur at appropriate conditions. For a fixed volume of the bubble, increasing the cylinder radius may result in the formation of well-defined rear recirculatory wakes that are associated with lateral bulging and skirt formation. The paper includes figures of bubble shape regimes for various values of R*, Eo, Mo, and ReT. Our predictions agree with existing results reported in the literature.Publication Biomimetic surfaces via dextran immobilization : grafting density and surface properties(2004-04-12) Irish, Elizabeth R; Miksa, Davide; Composto, Russell J; Eckmann, David M; Chen, DwayneBiomimetic surfaces were prepared by chemisorption of oxidized dextran (Mw = 110 kDa) onto SiO2 substrates that were previously modified with aminopropyl-tri-ethoxy silane (APTES). The kinetics of dextran oxidation by sodium metaperiodate (NaIO4) were quantified by 1H NMR and pH measurements. The extent of oxidation was then used to control the morphology of the biomimetic surface. Oxidation times of 0.5, 1, 2, 4, and 24 hours resulted in <20, ~30, ~40, ~50 and 100% oxidation, respectively. The surfaces were characterized by contact angle analysis and atomic force microscopy (AFM). Surfaces prepared with low oxidation times revealed a more densely packed "brushy" layer when imaged by AFM than those prepared at low oxidation times. Finally, the contact angle data revealed, quite unexpectedly, that the surface with the greatest entropic freedom (0.5 h) wetted the fastest and to the greatest extent (THETAAPTES > THETA1h > THETA2,4h > THETA0.5h).Publication Generalized Langevin dynamics of a nanoparticle using a finite element approach: Thermostating with correlated noise(2011-09-16) Balakrishnan, Uma; Swaminathan, T. N.; Ayyaswamy, Portonovo S; Eckmann, David M; Radhakrishnan, RaviA direct numerical simulation (DNS) procedure is employed to study the thermal motion of a nanoparticle in an incompressible Newtonian stationary fluid medium with the generalized Langevin approach. We consider both the Markovian (white noise) and non-Markovian (Ornstein-Uhlenbeck noise and Mittag-Leffler noise) processes. Initial locations of the particle are at various distances from the bounding wall to delineate wall effects. At thermal equilibrium, the numerical results are validated by comparing the calculated translational and rotational temperatures of the particle with those obtained from the equipartition theorem. The nature of the hydrodynamic interactions is verified by comparing the velocity autocorrelation functions and mean square displacements with analytical results. Numerical predictions of wall interactions with the particle in terms of mean square displacements are compared with analytical results. In the non-Markovian Langevin approach, an appropriate choice of colored noise is required to satisfy the power-law decay in the velocity autocorrelation function at long times. The results obtained by using non-Markovian Mittag-Leffler noise simultaneously satisfy the equipartition theorem and the long-time behavior of the hydrodynamic correlations for a range of memory correlation times. The Ornstein-Uhlenbeck process does not provide the appropriate hydrodynamic correlations. Comparing our DNS results to the solution of an one-dimensional generalized Langevin equation, it is observed that where the thermostat adheres to the equipartition theorem, the characteristic memory time in the noise is consistent with the inherent time scale of the memory kernel. The performance of the thermostat with respect to equilibrium and dynamic properties for various noise schemes is discussed.Publication Computational Model or Nanocarrier Binding to Endothelium Validated Using in Vivo, in Vitro and Atomic Force Microscopy Experiments(2010-09-21) Liu, Jin; Zern, Blaine; Ayyaswamy, Portonovo S; Eckmann, David M; Muzykantov, Vladimir R; Radhakrishnan, Ravi; Weller, Gregory E.R.A computational methodology based on Metropolis Monte Carlo (MC) and the weighted histogram analysis method (WHAM) has been developed to calculate the absolute binding free energy between functionalized nanocarriers (NC) and endothelial cell (EC) surfaces. The calculated NC binding free energy landscapes yield binding affinities that agree quantitatively when directly compared against analogous measurements of specific antibodycoated NCs (100 nm in diameter) to intracellular adhesion molecule- 1 (ICAM-1) expressing EC surface in in vitro cell-culture experiments. The effect of antibody surface coverage (σs) of NC on binding simulations reveals a threshold σs value below which the NC binding affinities reduce drastically and drop lower than that of single anti-ICAM-1 molecule to ICAM-1. The model suggests that the dominant effect of changing σs around the threshold is through a change in multivalent interactions; however, the loss in translational and rotational entropies are also important. Consideration of shear flow and glycocalyx does not alter the computed threshold of antibody surface coverage. The computed trend describing the effect of σs on NC binding agrees remarkably well with experimental results of in vivo targeting of the anti- ICAM-1 coated NCs to pulmonary endothelium in mice. Model results are further validated through close agreement between computed NC rupture-force distribution and measured values in atomic force microscopy (AFM) experiments. The three-way quantitative agreement with AFM, in vitro (cell-culture), and in vivo experiments establishes the mechanical, thermodynamic, and physiological consistency of our model. Hence, our computational protocol represents a quantitative and predictive approach for model-driven design and optimization of functionalized nanocarriers in targeted vascular drug deliveryPublication Effect of a Soluble Surfactant on a Finite-Sized Bubble Motion in a Blood Vessel(2010-01-01) Swaminathan, Tirumani N.; Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.We present detailed results for the motion of a finite-sized gas bubble in a blood vessel. The bubble (dispersed phase) size is taken to be such as to nearly occlude the vessel. The bulk medium is treated as a shear thinning Casson fluid and contains a soluble surfactant that adsorbs and desorbs from the interface. Three different vessel sizes, corresponding to a small artery, a large arteriole, and a small arteriole, in normal humans, are considered. The haematocrit (volume fraction of RBCs) has been taken to be 0.45. For arteriolar flow, where relevant, the Fahraeus–Lindqvist effect is taken into account. Bubble motion causes temporal and spatial gradients of shear stress at the cell surface lining the vessel wall as the bubble approaches the cell, moves over it and passes it by. Rapid reversals occur in the sign of the shear stress imparted to the cell surface during this motion. Shear stress gradients together with sign reversals are associated with a recirculation vortex at the rear of the moving bubble. The presence of the surfactant reduces the level of the shear stress gradients imparted to the cell surface as compared to an equivalent surfactant-free system. Our numerical results for bubble shapes and wall shear stresses may help explain phenomena observed in experimental studies related to gas embolism, a significant problem in cardiac surgery and decompression sickness.Publication Dextran grafted silicon substrates : preparation, characterization and biomedical applications(2003-04-21) Eckmann, David M; Ombelli, Michela; Composto, Russell JBiodevices used in the cardiovascular system suffer from well-known problems associated with surface-induced gas embolism and thrombosis. In order to improve the biocompatibility of these devices, biomimetic coatings show good promise. We recently synthesized a coating layer of dextran, a relatively simple and well characterized neutral polysaccharide, with the purpose of mimicking the cells' glycocalyx layer, that prevents non-specific cells-protein interactions. Systematic physical chemical characterization was performed on coatings obtained both from commonly used polydisperse dextrans and low-dispersity dextrans in the 1-100 kDalton molecular weight range. We have combined standard surface analysis techniques, such as ellipsometry, contact angle measurements and AFM, with less traditional vibrational spectroscopy techniques in the characterization of our biomimetic coatings. FTIR, micro-FTIR and micro-Raman spectroscopies were utilized to correlate the conformational and molecular aspects of the grafted poly- and monodisperse dextran chains to their attractive biological properties.Publication Biomimetic dextran coatings on silicon wafers : thin film properties and wetting(2002-12-02) Eckmann, David M; Ombelli, Michela; Composto, Russell JThere has been much recent interest in polysaccharide coatings for biotechnology applications. We obtained highly wettable dextran coatings applied to flat silicon wafer surfaces through a two-step process: in the first step, the silicon is aminated by the deposition of a selfassembled monolayer of 3-aminopropyltriethoxysilane (APTES); in the second step, polydisperse and low dispersity dextrans with molecular weights ranging from 1 kDa to 100 kDa are covalently grafted along the backbone to the surface amino groups to achieve strong interfacial anchoring. The effect of dextran concentration on film thickness and contact angle is investigated. Atomic force microscopy (AFM) has been employed to characterize surface roughness and coverage of the dextrans as well as the APTES monolayers. The synthetic surfaces were also tested for gas bubble adhesion properties.