Atanasov, Nikolay

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 3 of 3
  • Publication
    Estimation of Blood Oxygen Content Using Context-Aware Filtering
    (2016-04-01) Ivanov, Radoslav; Atanasov, Nikolay; Weimer, James; Simpao, Allan F; Rehman, Mohamed A; Pappas, George; Lee, Insup; Pajic, Miroslav
    In this paper we address the problem of estimating the blood oxygen concentration in children during surgery.Currently, the oxygen content can only be measured through invasive means such as drawing blood from the patient. In this work, we attempt to perform estimation by only using other non-invasive measurements (e.g., fraction of oxygen in inspired air, volume of inspired air) collected during surgery. Although models mapping these measurements to blood oxygen content contain multiple parameters that vary widely across patients, the non-invasive measurements can be used to provide binary information about whether the oxygen concentration is rising or dropping. This information can then be incorporated in a context-aware filter that is used to combine regular continuous measurements with discrete detection events in order to improve estimation. We evaluate the filter using real-patient data collected over the last decade at the Children’s Hospital of Philadelphia and show that it is a promising approach for the estimation of unobservable physiological variables.
  • Publication
    Robust Estimation Using Context-Aware Filtering
    (2015-09-01) Ivanov, Radoslav; Atanasov, Nikolay; Pappas, George; Lee, Insup; Pajic, Miroslav
    This paper presents the context-aware filter, an estimation technique that incorporates context measurements, in addition to the regular continuous measurements. Context measurements provide binary information about the system’s context which is not directly encoded in the state; examples include a robot detecting a nearby building using image processing or a medical device alarming that a vital sign has exceeded a predefined threshold. These measurements can only be received from certain states and can therefore be modeled as a function of the system’s current state. We focus on two classes of functions describing the probability of context detection given the current state; these functions capture a wide variety of detections that may occur in practice. We derive the corresponding context-aware filters, a Gaussian Mixture filter and another closed-form filter with a posterior distribution whose moments are derived in the paper. Finally, we evaluate the performance of both classes of functions through simulation of an unmanned ground vehicle.
  • Publication
    Robust Localization Using Context-Aware Filtering
    (2015-07-01) Ivanov, Radoslav; Atanasov, Nikolay; Pajic, Miroslav; Lee, Insup; Pappas, George
    In this paper we develop a robot localization technique that incorporates discrete context measurements, in addition to standard continuous state measurements. Context measurements provide binary information about detected events in the robot’s environment, e.g., a building is recognized using image processing or a known radio station is received. Such measurements can only be detected from certain positions and can, therefore, be correlated with the robot’s state. We investigate two specific examples where context measurements are especially useful – an urban localization scenario where GPS measurements are not reliable as well as the capture of the RQ-170 Sentinel drone in Iran, where GPS measurements were spoofed. By focusing on a specific class of probability of context detection functions, we derive a closed-form Gaussian mixture filter that is precise, captures context, and has the theoretical properties of the Kalman filter. Finally, we provide simulations of the urban localization scenario with an unmanned ground vehicle and show that the proposed context-aware filter is more robust and more accurate than the conventional extended Kalman filter, which only uses continuous measurements.