Sundaram, Shreyas
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 2 of 2
Publication Control of Quantized Multi-Agent Systems with Linear Nearest Neighbor Rules: A Finite Field Approach(2010-07-01) Sundaram, Shreyas; Hadjicostis, Christosforos NWe study the problem of controlling a multi-agent system where each agent is only allowed to be in a discrete and finite set of states. Each agent is capable of updating its state based on the states of its neighbors, and there is a leader agent in the network that is allowed to update its state in arbitrary ways (within the discrete set) in order to put all agents in a desired state. We present a novel solution to this problem by viewing the discrete states of the system as elements of a finite field. Specifically, we develop a theory of structured linear systems over finite fields, and show that such systems will be controllable provided that the size of the finite field is sufficiently large, and that the graph associated with the system satisfies certain properties. We then use these results to show that a multi-agent system with a leader node is controllable via a linear nearest-neighbor update as long as there is a path from the leader to every node, and that the number of discrete states for each node is large enough.Publication On the Time Complexity of Information Dissemination via Linear Iterative Strategies(2010-01-01) Sundaram, Shreyas; Hadjicostis, Christoforos NGiven an arbitrary network of interconnected nodes, each with an initial value, we study the number of timesteps required for some (or all) of the nodes to gather all of the initial values via a linear iterative strategy. At each time-step in this strategy, each node in the network transmits a weighted linear combination of its previous transmission and the most recent transmissions of its neighbors. We show that for almost any choice of real-valued weights in the linear iteration (i.e., for all but a set of measure zero), the number of time-steps required for any node to accumulate all of the initial values is upper-bounded by the size of the largest tree in a certain subgraph of the network; we use this fact to show that the linear iterative strategy is time-optimal for information dissemination in certain networks. In the process of deriving our results, we also obtain a characterization of the observability index for a class of linear structured systems.