Peleckis, Amy
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 2 of 2
Publication Towards a Model-Based Meal Detector for Type I Diabetics(2015-04-13) Chen, Sanjian; Weimer, James; Rickels, Michael R.; Peleckis, Amy; Lee, InsupBlood glucose management systems are an important class of Medical Cyber-Physical Systems that provide vital everyday decision support service to diabetics. An artificial pancreas, which integrates a continuous glucose monitor, a wearable insulin pump, and control algorithms running on embedded computing devices, can significantly improve the quality of life for millions of Type 1 diabetics. A primary problem in the development of an artificial pancreas is the accurate detection and estimation of meal carbohydrates, which cause significant glucose system disturbances. Meal carbohydrate detection is challenging since post-meal glucose responses greatly depend on patient-specific physiology and meal composition. In this paper, we develop a novel meal-time detector that leverages a linearized physiological model to realize a (nearly) constant false alarm rate (CFAR) performance despite unknown model parameters and uncertain meal inputs. Insilico evaluations using 10, 000 virtual subjects on an FDA-accepted maximal physiological model illustrate that the proposed CFAR meal detector significantly outperforms a current state-of-the-art meal detector that utilizes a voting scheme based on rate-of-change (RoC) measures. The proposed detector achieves 99.6% correct detection rate while averaging one false alarm every 24 days (a 1.4% false alarm rate), which represents an 84% reduction in false alarms and a 95% reduction in missed alarms when compared to the RoC approach.Publication A Data-Driven Behavior Modeling and Analysis Framework for Diabetic Patients on Insulin Pumps(2015-10-01) Chen, Sanjian; Feng, Lu; Rickels, Michael R.; Peleckis, Amy; Sokolsky, Oleg; Lee, InsupAbout 30%-40% of Type 1 Diabetes (T1D) patients in the United States use insulin pumps. Current insulin infusion systems require users to manually input meal carb count and approve or modify the system-suggested meal insulin dose. Users can give correction insulin boluses at any time. Since meal carbohydrates and insulin are the two main driving forces of the glucose physiology, the user-specific eating and pump-using behavior has a great impact on the quality of glycemic control. In this paper, we propose an “Eat, Trust, and Correct” (ETC) framework to model the T1D insulin pump users’ behavior. We use machine learning techniques to analyze the user behavior from a clinical dataset that we collected on 55 T1D patients who use insulin pumps. We demonstrate the usefulness of the ETC behavior modeling framework by performing in silico experiments. To this end, we integrate the user behavior model with an individually parameterized glucose physiological model, and perform probabilistic model checking on the user-in-the-loop system. The experimental results show that switching behavior types can significantly improve a patient’s glycemic control outcomes. These analysis results can boost the effectiveness of T1D patient education and peer support.