Akçay, Erol

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 10 of 16
  • Publication
    Group Size and Social Conflict in Complex Societies
    (2014-02-01) Shen, Sheng-Feng; Akçay, Erol; Rubenstein, Dustin R
    Conflicts of interest over resources or reproduction among individuals in a social group have long been considered to result in automatic and universal costs to group living. However, exploring how social conflict varies with group size has produced mixed empirical results. Here we develop a model that generates alternative predictions for how social conflict should vary with group size depending on the type of benefits gained from being in a social group. We show that a positive relationship between social conflict and group size is favored when groups form primarily for the benefits of sociality but not when groups form mainly for accessing group-defended resources. Thus, increased social conflict in animal societies should not be viewed as an automatic cost of larger social groups. Instead, studying the relationship between social conflict and the types of grouping benefits will be crucial for understanding the evolution of complex societies.
  • Publication
    Negotiation of Mutualism: Rhizobia and Legumes
    (2007-01-01) Akçay, Erol; Roughgarden, Joan
    The evolution and persistence of biological cooperation have been an important puzzle in evolutionary theory. Here, we suggest a new approach based on bargaining theory to tackle the question. We present a mechanistic model for negotiation of benefits between a nitrogen-fixing nodule and a legume plant. To that end, we first derive growth rates for the nodule and plant from metabolic models of each as a function of material fluxes between them. We use these growth rates as pay-off functions in the negotiation process, which is analogous to collective bargaining between a firm and a workers’ union. Our model predicts that negotiations lead to the Nash bargaining solution, maximizing the product of players’ pay-offs. This work introduces elements of cooperative game theory into the field of mutualistic interactions. In the discussion of the paper, we argue for the benefits of such an approach in studying the question of biological cooperation.
  • Publication
    The Perfect Family: Decision Making in Biparental Care
    (2009-10-13) Akçay, Erol; Roughgarden, Joan
    Background Previous theoretical work on parental decisions in biparental care has emphasized the role of the conflict between evolutionary interests of parents in these decisions. A prominent prediction from this work is that parents should compensate for decreases in each other's effort, but only partially so. However, experimental tests that manipulate parents and measure their responses fail to confirm this prediction. At the same time, the process of parental decision making has remained unexplored theoretically. We develop a model to address the discrepancy between experiments and the theoretical prediction, and explore how assuming different decision making processes changes the prediction from the theory. Model Description We assume that parents make decisions in behavioral time. They have a fixed time budget, and allocate it between two parental tasks: provisioning the offspring and defending the nest. The proximate determinant of the allocation decisions are parents' behavioral objectives. We assume both parents aim to maximize the offspring production from the nest. Experimental manipulations change the shape of the nest production function. We consider two different scenarios for how parents make decisions: one where parents communicate with each other and act together (the perfect family), and one where they do not communicate, and act independently (the almost perfect family). Conclusions/Significance The perfect family model is able to generate all the types of responses seen in experimental studies. The kind of response predicted depends on the nest production function, i.e. how parents' allocations affect offspring production, and the type of experimental manipulation. In particular, we find that complementarity of parents' allocations promotes matching responses. In contrast, the relative responses do not depend on the type of manipulation in the almost perfect family model. These results highlight the importance of the interaction between nest production function and how parents make decisions, factors that have largely been overlooked in previous models.
  • Publication
    Biological Institutions: The Political Science of Animal Cooperation
    (2013-07-01) Akçay, Erol; Roughgarden, Joan; Fearon, James; Ferejohn, John; Weingast, Barry R
    Social evolution is one of the most rapidly developing areas in evolutionary biology. A main theme is the emergence of cooperation among organisms, including the factors that impede cooperation. Although animal societies seem to have no formal institutions, such as courts or legislatures, we argue that biology presents many examples where an interaction can properly be thought of as an informal institution, meaning there are evolved norms and structure to the interaction that enable parties to reach mutually beneficial outcomes. These informal institutions are embedded in the natural history of the interaction, in factors such as where and when parties interact, how long and how close they stay together, and so on. Institutional theory thus widens the scope of behavioral ecology by considering not only why animals evolve to choose the strategies they choose, but also asking both why it is that they find themselves in those particular interaction setups and how these particular interactions can be sustained. Institutions frequently enable interacting parties avoid inefficient outcomes and support efficient exchange among agents with conflicting interests. The main thesis of this paper is that the organization of many biological interactions can properly be understood as institutions that enable mutually beneficial outcomes to be achieved relative to an unstructured interaction. To do this, institutions resolve or regulate the conflicts of interests among parties. The way conflicts of interests affect the outcome depends on the structure of the interaction, which can create problems of commitment, coordination and private information. Institutional theory focuses on how to address each of these issues, typically focusing on the development of social norms, rules, and other constraints on individual behaviors. We illustrate our thesis with examples from cooperative breed and genes as within-body-mechanism-design.
  • Publication
    The Evolution of Payoff Matrices: Providing Incentives to Cooperate
    (2011-01-01) Akçay, Erol; Roughgarden, Joan
    Most of the work in evolutionary game theory starts with a model of a social situation that gives rise to a particular payoff matrix and analyses how behaviour evolves through natural selection. Here, we invert this approach and ask, given a model of how individuals behave, how the payoff matrix will evolve through natural selection. In particular, we ask whether a prisoner’s dilemma game is stable against invasions by mutant genotypes that alter the payoffs. To answer this question, we develop a two-tiered framework with goal-oriented dynamics at the behavioural time scale and a diploid population genetic model at the evolutionary time scale. Our results are two-fold: first, we show that the prisoner’s dilemma is subject to invasions by mutants that provide incentives for cooperation to their partners, and that the resulting game is a coordination game similar to the hawk – dove game. Second, we find that for a large class of mutants and symmetric games, a stable genetic polymorphism will exist in the locus determining the payoff matrix, resulting in a complex pattern of behavioural diversity in the population. Our results highlight the importance of considering the evolution of payoff matrices to understand the evolution of animal social systems.
  • Publication
    Extra-Pair Parentage: A New Theory Based on Transactions in a Cooperative Game
    (2007-01-01) Akçay, Erol; Roughgarden, Joan
    Question: What is the adaptive significance of extra-pair parentage? Theoretical approach:We view parentage as a ‘transaction currency’ for exchanges of ecological benefits. We develop a multi-player cooperative game, using the core and the Nash bargaining solution as solution concepts. Model assumptions: Birds can negotiate about who pairs with whom. Parentage can be exchanged between individuals as a result of negotiations. Number of offspring fledged from a nest depends on the experience and situation of the social parents and not on their genes (i.e. only direct benefits, no genetic benefits). Predictions: We predict extra-pair parentage to occur when individuals with higher breeding capability are paired to individuals with lower breeding capability. Social interactions between males are predicted to precede the occurrence of extra-pair paternity. We give an example experiment to test our model.
  • Publication
    Social Inheritance Can Explain the Structure of Animal Social Networks
    (2015-01-01) Ilany, Amiyaal; Akçay, Erol
    The social network structure of animal populations has major implications to survival, reproductive success, sexual selection, and pathogen transmission. Recent studies showed in various species that the structure of social networks and individuals’ positions in it are influenced by individual traits such as sex, age, and social rank, and can be heritable between generations. But as of yet, no general theory of social network structure exists that can explain the diversity of social networks observed in nature, and serve as a null model for detecting species and population-specific factors. Here we propose such a general model of social network structure. We consider the emergence of network structure as a result of two types of social bond formation: via social inheritance, in which newborns are likely to bond with maternal contacts, and via forming bonds randomly. We compare model output to data from several species, showing that it can generate networks with properties such as those observed in real social systems. Our model demonstrates that some of the observed properties of social networks, such as heritability of network position or assortative associations, can be understood as a consequence of social inheritance. Our results highlight the need to consider the dynamic processes that generate social structure in order to explain patterns of variation in social networks.
  • Publication
    Publishing in the Sciences: An Evolving Paradigm
    (2015-11-16) Akçay, Erol; Johnston, Eric; Curley, Martha A. Q.
    This panel features Penn faculty who will talk about their experiences and perspectives on publishing their scholarly work on open access platforms. Eric Johnston will speak on the Quatrone Nanofab facility's use of ScholarlyCommons to make lab protocols, tool data, and operating procedures publicly available. Erol Akcay will speak on his experience in publishing preprints in several established open access venues. Martha Curley will speak about her open access textbook as well as her work making resources openly accessible to nurse practitioner.
  • Publication
    Pathways to Social Evolution: Reciprocity, Relatedness, and Synergy
    (2014-08-01) Van Cleve, Jeremy; Akçay, Erol
    Many organisms live in populations structured by space and by class, exhibit plastic responses to their social partners, and are subject to nonadditive ecological and fitness effects. Social evolution theory has long recognized that all of these factors can lead to different selection pressures but has only recently attempted to synthesize how these factors interact. Using models for both discrete and continuous phenotypes, we show that analyzing these factors in a consistent framework reveals that they interact with one another in ways previously overlooked. Specifically, behavioral responses (reciprocity), genetic relatedness, and synergy interact in nontrivial ways that cannot be easily captured by simple summary indices of assortment. We demonstrate the importance of these interactions by showing how they have been neglected in previous synthetic models of social behavior both within and between species. These interactions also affect the level of behavioral responses that can evolve in the long run; proximate biological mechanisms are evolutionarily stable when they generate enough responsiveness relative to the level of responsiveness that exactly balances the ecological costs and benefits. Given the richness of social behavior across taxa, these interactions should be a boon for empirical research as they are likely crucial for describing the complex relationship linking ecology, demography, and social behavior.
  • Publication
    Evolutionary Models of Mutualism
    (2015-01-01) Akçay, Erol