Taskar, Ben

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 10 of 30
  • Publication
    Posterior Sparsity in Unsupervised Dependency Parsing
    (2010-01-01) Gillenwater, Jennifer; Ganchev, Kuzman; Graça, João; Pereira, Fernando; Taskar, Ben
    A strong inductive bias is essential in unsupervised grammar induction. In this paper, we explore a particular sparsity bias in dependency grammars that encourages a small number of unique dependency types. We use part-of-speech (POS) tags to group dependencies by parent-child types and investigate sparsity-inducing penalties on the posterior distributions of parent-child POS tag pairs in the posterior regularization (PR) framework of Graça et al. (2007). In experiments with 12 different languages, we achieve significant gains in directed accuracy over the standard expectation maximization (EM) baseline for 9 of the languages, with an average accuracy improvement of 6%. Further, we show that for 8 out of 12 languages, the new method outperforms models based on standard Bayesian sparsity-inducing parameter priors, with an average improvement of 4%. On English text in particular, we show that our approach improves performance over other state of the art techniques.
  • Publication
    Learning from Partial Labels
    (2011-04-01) Cour, Timothee; Sapp, Benjamin; Taskar, Ben
    We address the problem of partially-labeled multiclass classification, where instead of a single label per instance, the algorithm is given a candidate set of labels, only one of which is correct. Our setting is motivated by a common scenario in many image and video collections, where only partial access to labels is available. The goal is to learn a classifier that can disambiguate the partially-labeled training instances, and generalize to unseen data. We define an intuitive property of the data distribution that sharply characterizes the ability to learn in this setting and show that effective learning is possible even when all the data is only partially labeled. Exploiting this property of the data, we propose a convex learning formulation based on minimization of a loss function appropriate for the partial label setting. We analyze the conditions under which our loss function is asymptotically consistent, as well as its generalization and transductive performance. We apply our framework to identifying faces culled from web news sources and to naming characters in TV series and movies; in particular, we annotated and experimented on a very large video data set and achieve 6% error for character naming on 16 episodes of the TV series Lost.
  • Publication
    Generative-Discriminitive Basis Learning for Medical Imaging
    (2011-01-01) Taskar, Ben; Batmanghelich, Nematollah K; Davatzikos, Christos
    This paper presents a novel dimensionality reduction method for classification in medical imaging. The goal is to transform very high-dimensional input (typically, millions of voxels) to a low-dimensional representation (small number of constructed features) that preserves discriminative signal and is clinically interpretable. We formulate the task as a constrained optimization problem that combines generative and discriminative objectives and show how to extend it to the semisupervised learning (SSL) setting. We propose a novel largescale algorithm to solve the resulting optimization problem. In the fully supervised case, we demonstrate accuracy rates that are better than or comparable to state-of-the-art algorithms on several datasets while producing a representation of the group difference that is consistent with prior clinical reports. Effectiveness of the proposed algorithm for SSL is evaluated with both benchmark and medical imaging datasets. In the benchmark datasets, the results are better than or comparable to the state-of-the-art methods for SSL. For evaluation of the SSL setting in medical datasets, we use images of subjects with Mild Cognitive Impairment (MCI), which is believed to be a precursor to Alzheimer’s disease (AD), as unlabeled data. AD subjects and Normal Control (NC) subjects are used as labeled data, and we try to predict conversion from MCI to AD on follow-up. The semi-supervised extension of this method not only improves the generalization accuracy for the labeled data (AD/NC) slightly but is also able to predict subjects which are likely to converge to AD.
  • Publication
    Mixture-of-Parents Maximum Entropy Markov Models
    (2007-07-01) Rosenberg, David; Klein, Dan; Taskar, Ben
    We present the mixture-of-parents maximum entropy Markov model (MoP-MEMM), a class of directed graphical models extending MEMMs. The MoP-MEMM allows tractable incorporation of long-range dependencies be- tween nodes by restricting the conditional distribution of each node to be a mixture of distributions given the parents. We show how to efficiently compute the exact marginal posterior node distributions, regardless of the range of the dependencies. This enables us to model non-sequential correlations present within text documents, as well as between in- terconnected documents, such as hyperlinked web pages. We apply the MoP-MEMM to a named entity recognition task and a web page classification task. In each, our model shows significant improvement over the basic MEMM, and is competitive with other long- range sequence models that use approximate inference. 1 Introduction
  • Publication
    Learning Determinantal Point Processes
    (2011-07-01) Taskar, Ben; Kulesza, Alex
    Determinantal point processes (DPPs), which arise in random matrix theory and quantum physics, are natural models for subset selection problems where diversity is preferred. Among many remarkable properties, DPPs other tractable algorithms for exact inference, including computing marginal probabilities and sampling; how- ever, an important open question has been how to learn a DPP from labeled training data. In this paper we propose a natural feature-based parameterization of conditional DPPs, and show how it leads to a convex and efficient learning formulation. We analyze the relationship between our model and binary Markov random fields with repulsive potentials, which are qualitatively similar but computationally intractable. Finally, we apply our approach to the task of extractive summarization, where the goal is to choose a small subset of sentences conveying the most important information from a set of documents. In this task there is a fundamental tradeoff between sentences that are highly relevant to the collection as a whole, and sentences that are diverse and not repetitive. Our parameterization allows us to naturally balance these two characteristics. We evaluate our system on data from the DUC 2003/04 multi- document summarization task, achieving state-of-the-art results.
  • Publication
    Cascaded Models for Articulated Pose Estimation
    (2010-09-01) Sapp, Benjamin; Toshev, Alexander; Taskar, Ben
    We address the problem of articulated human pose estimation by learning a coarse-to-fine cascade of pictorial structure models. While the fine-level state-space of poses of individual parts is too large to permit the use of rich appearance models, most possibilities can be ruled out by efficient structured models at a coarser scale. We propose to learn a sequence of structured models at different pose resolutions, where coarse models filter the pose space for the next level via their max-marginals. The cascade is trained to prune as much as possible while preserving true poses for the final level pictorial structure model. The final level uses much more expensive segmentation, contour and shape features in the model for the remaining filtered set of candidates. We evaluate our framework on the challenging Buffy and PASCAL human pose datasets, improving the state-of-the-art.
  • Publication
    Alignment by Agreement
    (2006-06-01) Liang, Percy; Taskar, Ben; Klein, Dan
    We present an unsupervised approach to symmetric word alignment in which two simple asymmetric models are trained jointly to maximize a combination of data likelihood and agreement between the models. Compared to the standard practice of intersecting predictions of independently-trained models, joint training provides a 32% reduction in AER. Moreover, a simple and efficient pair of HMM aligners provides a 29% reduction in AER over symmetrized IBM model 4 predictions.
  • Publication
    Adaptive Pose Priors for Pictorial Structures
    (2010-06-01) Taskar, Ben; Sapp, Benjamin; Jordan, Chris
    Pictorial structure (PS) models are extensively used for part-based recognition of scenes, people, animals and multi-part objects. To achieve tractability, the structure and parameterization of the model is often restricted, for example, by assuming tree dependency structure and unimodal, data-independent pairwise interactions. These expressivity restrictions fail to capture important patterns in the data. On the other hand, local methods such as nearest-neighbor classification and kernel density estimation provide nonparametric flexibility but require large amounts of data to generalize well. We propose a simple semi-parametric approach that combines the tractability of pictorial structure inference with the flexibility of non-parametric methods by expressing a subset of model parameters as kernel regression estimates from a learned sparse set of exemplars. This yields query-specific, image-dependent pose priors. We develop an effective shape-based kernel for upper-body pose similarity and propose a leave-one-out loss function for learning a sparse subset of exemplars for kernel regression. We apply our techniques to two challenging datasets of human figure parsing and advance the state-of-the-art (from 80% to 86% on the Buffy dataset [8]), while using only 15% of the training data as exemplars.
  • Publication
    Semi-Supervised Learning with Adversarially Missing Label Information
    (2010-12-01) Syed, Umar; Taskar, Ben
    We address the problem of semi-supervised learning in an adversarial setting. Instead of assuming that labels are missing at random, we analyze a less favorable scenario where the label information can be missing partially and arbitrarily, which is motivated by several practical examples. We present nearly matching upper and lower generalization bounds for learning in this setting under reasonable assumptions about available label information. Motivated by the analysis, we formulate a convex optimization problem for parameter estimation, derive an efficient algorithm, and analyze its convergence. We provide experimental results on several standard data sets showing the robustness of our algorithm to the pattern of missing label information, outperforming several strong baselines.
  • Publication
    Structured Determinantal Point Processes
    (2010-12-01) Kulesza, Alex; Taskar, Ben
    We present a novel probabilistic model for distributions over sets of structures— for example, sets of sequences, trees, or graphs. The critical characteristic of our model is a preference for diversity: sets containing dissimilar structures are more likely. Our model is a marriage of structured probabilistic models, like Markov random fields and context free grammars, with determinantal point processes, which arise in quantum physics as models of particles with repulsive interactions. We extend the determinantal point process model to handle an exponentially-sized set of particles (structures) via a natural factorization of the model into parts. We show how this factorization leads to tractable algorithms for exact inference, including computing marginals, computing conditional probabilities, and sampling. Our algorithms exploit a novel polynomially-sized dual representation of determinantal point processes, and use message passing over a special semiring to compute relevant quantities. We illustrate the advantages of the model on tracking and articulated pose estimation problems.