Ayyaswamy, Portonovo S.
Email Address
ORCID
Disciplines
22 results
Search Results
Now showing 1 - 10 of 22
Publication Flow Past a Liquid Drop with a Large Non-uniform Radial Velocity(1983-08-01) Sadhal, Satwindar S.; Ayyaswamy, Portonovo S.In this analysis, the translation of a liquid drop experiencing a strong non-uniform radial velocity has been investigated. The situation arises when a moving liquid drop experiences condensation, evaporation or material decomposition at the surface. By simultaneously treating the flow fields inside and outside the drop, we have obtained physical results relevant to the problem. The magnitude of the radial velocity is allowed to be very large, but the drop motion is restricted to slow translation. The solution to the problem has been developed by considering a uniform radial flow with the translatory motion introduced as a perturbation. The role played by the inertial terms due to the strong radial field has been clearly delineated. The study has revealed several interesting features. An inward normal velocity on a slowly moving drop increases the drag. An increasing outward normal velocity decreases the drag up to a minimum beyond which it increases. The total drag force not only consists of contributions from the viscous and the form drags but also from the momentum transport at the interface. Since the liquid drop admits a non-zero tangential velocity, the tangential momentum convected by the radial velocity forms a part of this drag force. The circulation inside the drop decreases (increases) with an outward (inward) normal velocity. A sufficiently large non-uniform outward velocity causes the circulation to reverse. In the limit of the internal viscosity becoming infinite, our analysis collapses to the simple case of a translating rigid sphere experiencing a large non-uniform radial velocity. By letting the radial velocity become vanishingly small the Stokes-flow solution is recovered. An important contribution of the present study is the identification of a new singularity in the flow description. It accounts for both the inertial and the viscous forces and displays Stokeslet-like characteristics at infinity.Publication Thermal and electrical characteristics of a two‐dimensional tanh‐conductivity arc(1978) Ayyaswamy, Portonovo S.; Das, G. C.; Cohen, Ira M.The two-dimensional variable-property arc has been studied through the use of the tanh-conductivity model. Results that describe the thermal and electric arc characteristics for various values of the electrode temperatures and aspect ratios are given. The numerical evaluation is carried out by the use of a Galerkin technique. The results exhibit several novel and interesting features depending on the arc parameters. For large aspect ratios (ratio of the interelectrode distance to that between the bounding walls) and small electrode temperatures, the current---electric-field characteristics tend toward those of a slender arc. However, at a given aspect ratio with large enough electrode temperatures, the distinct minimum noted in the slender-arc characteristics does not occur. Also, for a given aspect ratio and large enough differences in electrode potential, the electric-field-current characteristic is nearly linear and is independent of the electrode temperature. The transverse electrostatic potential is found to have no significant variation in cross-sectional planes. The qualitative nature of the thermal characteristics are similar to those of a constant-property arc although significant differences in quantitative results exist. Wall and electrode heat transfer rates are provided.Publication Evaporation and Combustion of a Slowly Moving Liquid Fuel Droplet: Higher-Order Theory(1996-01-25) Jog, Milind A.; Ayyaswamy, Portonovo S.; Cohen, Ira M.The evaporation and combustion of a single-component fuel droplet which is moving slowly in a hot oxidant atmosphere have been analysed using perturbation methods. Results for the flow field, temperature and species distributions in each phase, interfacial heat and mass transfer, and the enhancement of the mass burning rate due to the presence of convection have all been developed correct to second order in the translational Reynolds number. This represents an advance over a previous study which analysed the problem to first order in the perturbation parameter. The primary motivation for the development of detailed analytical/numerical solutions correct to second order arises from the need for such a higher-order theory in order to investigate fuel droplet ignition and extinction characteristics in the presence of convective flow. Explanations for such a need, based on order of magnitude arguments, are included in this article. With a moving droplet, the shear at the interface causes circulatory motion inside the droplet. Owing to the large evaporation velocities at the droplet surface that usually accompany drop vaporization and burning, the entire flow field is not in the Stokes regime even for low translational Reynolds numbers. In view of this, the formulation for the continuous phase is developed by imposing slow translatory motion of the droplet as a perturbation to uniform radial flow associated with vigorous evaporation at the surface. Combustion is modelled by the inclusion of a fast chemical reaction in a thin reaction zone represented by the Burke-Schumann flame front. The complete solution for the problem correct to second order is obtained by simultaneously solving a coupled formulation for the dispersed and continuous phases. A noteworthy feature of the higher-order formulation is that both the flow field and transport equations require analysis by coupled singular perturbation procedures. The higher-order theory shows that, for identical conditions, compared with the first-order theory both the flame and the front stagnation point are closer to the surface of the drop, the evaporation is more vigorous, the droplet lifetime is shorter, and the internal vortical motion is asymmetric about the drop equatorial plane. These features are significant for ignition/extinction analyses since the prediction of the location of the point of ignition/extinction will depend upon such details. This article is the first of a two-part study; in the second part, analytical expressions and results obtained here will be incorporated into a detailed investigation of fuel droplet ignition and extinction. In view of the general nature of the formulation considered here, results presented have wider applicability in the general areas of interfacial fluid mechanics and heat/material transport. They are particularly useful in microgravity studies, in atmospheric sciences, in aerosol sciences, and in the prediction of material depletion from spherical particles.Publication Two-Dimenslonal Analysis of Electrical Breakdown in a Nonuniform Gap Between a Wire and a Plane(1989) Ramakrishna, K.; Cohen, Ira M.; Ayyaswamy, Portonovo S.Electrical breakdown of a gap between a wire (modeled as a hyperboloid) and a plane has been investigated numerically by solving the two-dimensional form of the diffusion flux equations for the charged particle number densities and Poisson's equation for the self-consistent electric field. Electron impact ionization, thermal ionization, and three-body recombination have been considered as the charged particle production and loss mechanisms. The electrode surfaces are considered to be absorbing and the initial density of the particles is small, but nonzero, A gap length of 0.5 mm is investigated and the gas medium is air or argon at atmospheric pressure. The temporal development of the profiles of ion and electron number densities, potential and electric field, and current growth on both the electrodes are presented when the applied voltage is 1500 and 2500 V for both positive and negative wires. When the wire is negatively biased, the peaks in the radial distribution of both of the charged particle densities near the wire occur off the axis except during the very early part of the breakdown. With positive polarity, the electron density maximum always occurs on the discharge axis, while for ions it moves away from the axis, later in the transient, due to the reverse particle drift in the electric field from the negative polarity case, The discharge spreads farther out into the ambient (almost two times the gap length) when the wire is negatively biased than with positive polarity. The effect of charge separation on the externally applied electric field is significant at voltages 2500 V and higher. Ionization is greater in argon than in air for a fixed potential difference between the electrodes.Publication On the Stability of Electric Arc Discharges(1976-06-07) Whitman, A. M.; Ayyaswamy, Portonovo S.; Cohen, Ira M.The stability of electric arc discharges has been explored through the use of an energy balance coupled with charge conservation. In order to facilitate this analysis, a new model for the electrical conductivity function has been proposed. Asymptotic solutions for the arc governing equations have been obtained. Stability criteria have been developed from both the linear theory (infinitesimal size disturbance) and from a minimizing solution point of view for finite size disturbances. The results delineate an open region in the stability diagram where arc instabilities may be possible.Publication Laminar Condensation on a Moving Drop. Part 2. Numerical Solutions(1984-02-01) Chung, J. N.; Ayyaswamy, Portonovo S.; Sadhal, Satwindar S.In this paper, we investigate the problem of transient laminar condensation on a moving drop by the semianalytical series-truncation method. The objectives are to assess the validity and the accuracy of the matched-asymptotic method employed in Part 1 . The fluid flow and thermodynamic variables are expanded as complete series of Legendre polynomials. The resulting transient momentum, energy and species equations are integrated numerically. The numerical scheme basically involves a three-point central difference for the spatial derivatives and a backward difference expression for the temporal derivatives. The finite-difference equations have been solved by the strongly implicit procedure. Good agreement of the fully transient numerical results with the singular perturbation approximation results of Part 1 lends credibility to a quasi-steady treatment of the continuous phase. The computational time requirements for the fully numerical solutions increase with decreasing non-condensable gas mass fraction in the bulk environment.Publication Oscillatory enhancement of the squeezing flow of yield stress fluids: A novel experimental result(1997-05-25) Zwick, K. J.; Ayyaswamy, Portonovo S.; Cohen, Ira M.The extrusion of a yield stress fluid from the space between two parallel plates is investigated experimentally. Oscillating the magnitude of the squeezing force about a mean value (F = f[1+αcos(ωt)]) was observed to significantly enhance the flow rate of yield stress fluids, while having no effect on the flow rate of Newtonian fluids. This is a novel result. The enhancement depends on the magnitude of the force, the oscillatory frequency and amplitude, the fluid being squeezed, and the thickness of the fluid layer. Non-dimensional results for the various flow quantities have been presented by using the flow predicted for the constant-force squeezing of a Herschel-Bulkley yield stress fluid as the reference. In the limit of constant-force squeezing, the present experimental results compare very well with those of our earlier theoretical model for this situation (Zwick, Ayyaswamy & Cohen 1996). The results presented in this paper have significance, among many applications, for injection moulding, in the adhesive bonding of microelectronic chips, and in surgical procedures employed in health care.Publication Charged Particle Distributions and Heat Transfer in a Discharge Between Geometrically Dissimilar Electrodes: From Breakdown to Steady State(2000-02-01) Qin, Wei; Ayyaswamy, Portonovo S.; Cohen, Ira M.The low-current electric discharge from a fine wire anode to a planar cathode in atmospheric pressure air is numerically simulated from high-voltage prebreakdown through electron temperature growth, then ionization and consequent current growth to steady state, limited by a ballast resistor in the external circuit. Conservation of number ~mass! for ions and electrons, Gauss’ law for the self-consistent electric field, and energy conservation for electrons have been solved from breakdown to steady state in a body fitted coordinate system generated specifically for these two geometrically dissimilar electrodes. To facilitate the discussion of the results, the discharge has been categorized under ~a! electron acceleration period, ~b! charged particle generation period, ~c! current increase and voltage drop period, and ~d! current and voltage stabilization period. Results are given for transient electron, ion, and temperature distributions in the gap as well as current growth and voltage drop across the gap. Heat flux from the discharge to the wire is calculated. The numerical simulations were compared with experiments performed under the same conditions on a wire bonding machine with very close correspondence.Publication Thin-Flame Theory for the Combustion of a Moving Liquid Drop: Effects Due to Variable Density(1986-10-01) Gogos, George; Sadhal, Satwindar S.; Ayyaswamy, Portonovo S; Sundararajan, T.The combustion of a moving liquid fuel drop has been investigated. The drop experiences a strong evaporation-induced radial velocity while undergoing slow translation. In view of the high evaporation velocity, the flow field is not in the Stokes regime. The combustion process is modelled by an indefinitely fast chemical reaction rate. While the flow and the transport in the continuous phase and the drop internal circulation are treated as quasisteady, the drop heat-up is regarded as a transient process. The transport equations of the continuous phase require analysis by a singular perturbation technique. The transient heat-up of the drop interior is solved by a series-truncation numerical method. The solution for the total problem is obtained by coupling the results for the continuous and dispersed phases. The enhancement in the mass burning rate and the deformation of the flame shape due to drop translation have been predicted. The initial temperature of the drop and the subsequent heating influence the temporal variations of the flamefront standoff ratio and the flame distance. The friction drag, the pressure drag and the drag due to interfacial momentum flux are individually predicted, and the total drag behaviour is discussed. The circulation inside the drop decreases with evaporation rate. A sufficiently large non-uniform evaporation velocity causes the circulation to reverse.Publication Hydrodynamics and Heat Transfer Associated with Condensation on a Moving Drop: Solutions for Intermediate Reynolds Numbers(1984-12-01) Sundararajan, T.; Ayyaswamy, Portonovo S.The hydrodynamics and heat/mass transport associated with condensation on a moving drop have been investigated for the intermediate Reynolds-number range of drop motion (Re = O(100)). The drop environment is a mixture of saturated vapour and a non-condensable. The formulation entails a simultaneous solution of the quasi-steady elliptic partial differential equations that describe the flow field and transport in the gaseous phase, and the motion inside the liquid drop. The heat transport inside the drop is treated as a transient process. Results are reported for the interfacial velocities, drag, external and internal flow structure, heat flux, drop growth rate and temperature-time history inside the drop. The results obtained here have been compared with experimental data where available, and these show excellent agreement. The results reveal several novel features. The surface-shear stress increases with condensation. The pressure level in the rear of the drop is higher. As a consequence, the friction drag is higher and the pressure drag is lower. The total drag coefficient increases with condensation rate for small values of drop size or temperature differential, and it decreases for large values of these parameters. The volume of the separated-flow region in the rear of the drop decreases with condensation. At very high rates of condensation, the recirculatory wake is completely suppressed. Condensation also delays the appearance of the weak secondary internal vortex motion in the drop. The heat and mass fluxes are significantly affected by the presence of the non-condensable in the gaseous phase and by the circulation inside the drop.
- «
- 1 (current)
- 2
- 3
- »