Zheng, Qi

Email Address
Research Projects
Organizational Units
Research Interests

Search Results

Now showing 1 - 4 of 4
  • Publication
    High-Throughput Identification of Long-Range Regulatory Elements and Their Target Promoters in the Human Genome
    (2013-05-01) Hwang, Yih-Chii; Zheng, Qi; Gregory, Brian D; Wang, Li-San
    Enhancer elements are essential for tissue-specific gene regulation during mammalian development. Although these regulatory elements are often distant from their target genes, they affect gene expression by recruiting transcription factors to specific promoter regions. Because of this long-range action, the annotation of enhancer element–target promoter pairs remains elusive. Here, we developed a novel analysis methodology that takes advantage of Hi-C data to comprehensively identify these interactions throughout the human genome. To do this, we used a geometric distribution-based model to identify DNA–DNA interaction hotspots that contact gene promoters with high confidence. We observed that these promoter-interacting hotspots significantly overlap with known enhancer-associated histone modifications and DNase I hypersensitive sites. Thus, we defined thousands of candidate enhancer elements by incorporating these features, and found that they have a significant propensity to be bound by p300, an enhancer binding transcription factor. Furthermore, we revealed that their target genes are significantly bound by RNA Polymerase II and demonstrate tissue-specific expression. Finally, we uncovered that these elements are generally found within 1 Mb of their targets, and often regulate multiple genes. In total, our study presents a novel high-throughput workflow for confident, genome-wide discovery of enhancer–target promoter pairs, which will significantly improve our understanding of these regulatory interactions.
  • Publication
    Global Analysis of RNA Secondary Structure in Two Metazoans
    (2012-01-26) Li, Fan; Zheng, Qi; Ryvkin, Paul; Valladares, Otto; Murray, John I; Dragomir, Isabelle; Desai, Yaanik; Aiyer, Subhadra; Cherry, Sara; Wang, Li-San; Yang, Jamie; Gregory, Brian D; Bambina, Shelley; Sabin, Leah R; Lamitina, Todd; Rai, Arjun
    The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA]) and unpaired (single-stranded RNA [ssRNA]) components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.
  • Publication
    Genome-Wide Double-Stranded RNA Sequencing Reveals the Functional Significance of Base-Paired RNAs in Arabidopsis
    (2010-09-30) Zheng, Qi; Ryvkin, Paul; Li, Fan; Valladares, Otto; Wang, Li-San; Gregory, Brian D; Dragomir, Isabelle; Yang, Jamie; Cao, Kajia
    The functional structure of all biologically active molecules is dependent on intra- and inter-molecular interactions. This is especially evident for RNA molecules whose functionality, maturation, and regulation require formation of correct secondary structure through encoded base-pairing interactions. Unfortunately, intra- and inter-molecular base-pairing information is lacking for most RNAs. Here, we marry classical nuclease-based structure mapping techniques with high-throughput sequencing technology to interrogate all base-paired RNA in Arabidopsis thaliana and identify ∼200 new small (sm)RNA–producing substrates of RNA–DEPENDENT RNA POLYMERASE6. Our comprehensive analysis of paired RNAs reveals conserved functionality within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs, as well as a novel population of functional RNAs, many of which are the precursors of smRNAs. Finally, we identify intra-molecular base-pairing interactions to produce a genome-wide collection of RNA secondary structure models. Although our methodology reveals the pairing status of RNA molecules in the absence of cellular proteins, previous studies have demonstrated that structural information obtained for RNAs in solution accurately reflects their structure in ribonucleoprotein complexes. Furthermore, our identification of RNA–DEPENDENT RNA POLYMERASE6 substrates and conserved functional RNA domains within introns and both 5′ and 3′ untranslated regions (UTRs) of mRNAs using this approach strongly suggests that RNA molecules are correctly folded into their secondary structure in solution. Overall, our findings highlight the importance of base-paired RNAs in eukaryotes and present an approach that should be widely applicable for the analysis of this key structural feature of RNA.
  • Publication
    Dicer-2 Processes Diverse Viral RNA Species
    (2013-02-12) Zheng, Qi; Sabin, Leah R; Thekkat, Pramod; Gregory, Brian D; Yang, Jamie; Hannon, Gregory J; Cherry, Sara; Tudor, Matthew
    RNA silencing pathways play critical roles in gene regulation, virus infection, and transposon control. RNA interference (RNAi) is mediated by small interfering RNAs (siRNAs), which are liberated from double-stranded (ds)RNA precursors by Dicer and guide the RNA-induced silencing complex (RISC) to targets. Although principles governing small RNA sorting into RISC have been uncovered, the spectrum of RNA species that can be targeted by Dicer proteins, particularly the viral RNAs present during an infection, are poorly understood. Dicer-2 potently restricts viral infection in insects by generating virus-derived siRNAs from viral RNA. To better characterize the substrates of Dicer-2, we examined the virus-derived siRNAs produced during the Drosophila antiviral RNAi response to four different viruses using high-throughput sequencing. We found that each virus was uniquely targeted by the RNAi pathway; dicing substrates included dsRNA replication intermediates and intramolecular RNA stem loops. For instance, a putative intergenic RNA hairpin encoded by Rift Valley Fever virus generates abundant small RNAs in both Drosophila and mosquito cells, while repetitive sequences within the genomic termini of Vaccinia virus, which give rise to abundant small RNAs in Drosophila, were found to be transcribed in both insect and mammalian cells. Moreover, we provide evidence that the RNA species targeted by Dicer-2 can be modulated by the presence of a viral suppressor of RNAi. This study uncovered several novel, heavily targeted features within viral genomes, offering insight into viral replication, viral immune evasion strategies, and the mechanism of antiviral RNAi.