McCallum, Andrew
Email Address
ORCID
Disciplines
Search Results
Now showing 1 - 1 of 1
Publication Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data(2001-06-28) Lafferty, John; McCallum, Andrew; Pereira, Fernando C.N.We present conditional random fields, a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions made in those models. Conditional random fields also avoid a fundamental limitation of maximum entropy Markov models (MEMMs) and other discriminative Markov models based on directed graphical models, which can be biased towards states with few successor states. We present iterative parameter estimation algorithms for conditional random fields and compare the performance of the resulting models to HMMs and MEMMs on synthetic and natural-language data.