Sha, Fei

Email Address
Research Projects
Organizational Units
Research Interests

Search Results

Now showing 1 - 3 of 3
  • Publication
    Learning a kernel matrix for nonlinear dimensionality reduction
    (2004-07-04) Weinberger, Kilian Q; Sha, Fei; Saul, Lawrence K
    We investigate how to learn a kernel matrix for high dimensional data that lies on or near a low dimensional manifold. Noting that the kernel matrix implicitly maps the data into a nonlinear feature space, we show how to discover a mapping that unfolds the underlying manifold from which the data was sampled. The kernel matrix is constructed by maximizing the variance in feature space subject to local constraints that preserve the angles and distances between nearest neighbors. The main optimization involves an instance of semidefinite programming---a fundamentally different computation than previous algorithms for manifold learning, such as Isomap and locally linear embedding. The optimized kernels perform better than polynomial and Gaussian kernels for problems in manifold learning, but worse for problems in large margin classification. We explain these results in terms of the geometric properties of different kernels and comment on various interpretations of other manifold learning algorithms as kernel methods.
  • Publication
    Statistical signal processing with nonnegativity constraints
    (2003-09-01) Saul, Lawrence K; Sha, Fei; Lee, Daniel D
    Nonnegativity constraints arise frequently in statistical learning and pattern recognition. Multiplicative updates provide natural solutions to optimizations involving these constraints. One well known set of multiplicative updates is given by the Expectation-Maximization algorithm for hidden Markov models, as used in automatic speech recognition. Recently, we have derived similar algorithms for nonnegative deconvolution and nonnegative quadratic programming. These algorithms have applications to low-level problems in voice processing, such as fundamental frequency estimation, as well as high-level problems, such as the training of large margin classifiers. In this paper, we describe these algorithms and the ideas that connect them.
  • Publication
    Multiplicative updates for nonnegative quadratic programming in support vector machines
    (2002-12-10) Sha, Fei; Saul, Lawrence K; Lee, Daniel D
    We derive multiplicative updates for solving the nonnegative quadratic programming problem in support vector machines (SVMs). The updates have a simple closed form, and we prove that they converge monotonically to the solution of the maximum margin hyperplane. The updates optimize the traditionally proposed objective function for SVMs. They do not involve any heuristics such as choosing a learning rate or deciding which variables to update at each iteration. They can be used to adjust all the quadratic programming variables in parallel with a guarantee of improvement at each iteration. We analyze the asymptotic convergence of the updates and show that the coefficients of non-support vectors decay geometrically to zero at a rate that depends on their margins. In practice, the updates converge very rapidly to good classifiers.