Buehler, Martin

Email Address
Research Projects
Organizational Units
Research Interests

Search Results

Now showing 1 - 2 of 2
  • Publication
    Analysis of A Simplified Hopping Robot
    (1991-12-01) Koditschek, Daniel E; Buehler, Martin
    This article offers some analytical results concerning simplified models of Raibert's hopper. We represent the task of achieving a recurring hopping height for an actuated "ball" robot as a stability problem in a nonlinear discrete dynamical control system. We model the properties of Raibert's control scheme in a simplified fashion and argue that his strategy leads to closed-loop dynamics governed by a well-known class of functions, the unimodal maps. The rich mathematical literature on this subject greatly advances our ability to determine the presence of an essentially globally attracting fixed point-the formal rendering of what we intuitively mean by a "correct" strategy. The motivation for this work is the hope that it will facilitate the development of general design principles for "dynamically dexterous" robots.
  • Publication
    RHex: A Simple and Highly Mobile Hexapod Robot
    (2001-07-01) Saranli, Uluc; Buehler, Martin; Koditschek, Daniel E
    In this paper, the authors describe the design and control of RHex, a power autonomous, untethered, compliant-legged hexapod robot. RHex has only six actuators—one motor located at each hip—achieving mechanical simplicity that promotes reliable and robust operation in real-world tasks. Empirically stable and highly maneuverable locomotion arises from a very simple clock-driven, openloop tripod gait. The legs rotate full circle, thereby preventing the common problem of toe stubbing in the protraction (swing) phase. An extensive suite of experimental results documents the robot’s significant “intrinsic mobility”—the traversal of rugged, broken, and obstacle-ridden ground without any terrain sensing or actively controlled adaptation. RHex achieves fast and robust forward locomotion traveling at speeds up to one body length per second and traversing height variations well exceeding its body clearance.