Huh, Suejung

Email Address
Research Projects
Organizational Units
Research Interests

Search Results

Now showing 1 - 2 of 2
  • Publication
    Efforts in Preparation for Jack Validation
    (1997-12-01) Badler, Norman I; Azuola, Francisco; Huh, Suejung; Ho, Pei-Hwa; Kokkevis, Evangelos; Ting, Bond-Jay
    This document presents a detailed record of the methodologies, assumptions, limitations, and references used in creating the human figure model in Jack, a program that displays and manipulates articulated geometric figures. This report reflects current efforts to develop and refine Jack software to enable its validation and verification as a tool for performing human engineering analysis. These efforts include human figure model improvements, statistical anthropometric data processing methods, enhanced human figure model construction and measuring methods, and automated accomodation analysis. This report discusses basic details of building human models, model anthropometry, scaling, Jack anthropometry-based human models, statistical data processing, figure generation tools, anthropometric errors, inverse dynamics, smooth skin implementation, guidelines used in estimating landmark locations on the model, and recommendations for validating and verifying the Jack human figure model.
  • Publication
    Collision Resolutions in Cloth Simulation
    (2001-11-07) Huh, Suejung; Metaxas, Dimitris; Badler, Norman I
    We present a new collision resolution scheme for cloth collisions. Our main concern is to find dynamically convincing resolutions, i.e. positions and velocities of cloth elements, for any kinds of collisions occuring in cloth simulation (cloth-cloth, cloth-rigid, and cloth-cloth-rigid). We define our cloth surface as connected faces of mass particles where each particle is controlled by its internal energy functions. Our collision resolution method finds appropriate next positions and velocities of particles by conserving the particles’ momentums as accurately as possible. Cloth-cloth collision resolution is a special case of deformable N-body collision resolution. So to solve deformable N-body collision resolutions, we propose a new collision resolution method, which groups cloth particles into parts and resolves collisions between parts using the law of momentum conservation. To resolve collisions, we solve a system of linear equations derived from the collision relationships. A system of linear equations is built using a scheme adapted from the simultaneous resolution method for rigid N-body collisions [1]. For the special case where we can find cyclic relationships in collisions, we solve a system of linear inequalities derived from the collision relationships.