Pulsipher, Katherine

Email Address
ORCID
Disciplines
Research Projects
Organizational Units
Position
Introduction
Research Interests

Search Results

Now showing 1 - 1 of 1
  • Publication
    Thermophilic Ferritin: Versatile Nanohost
    (2017-01-01) Pulsipher, Katherine
    Thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) is a 24meric, hollow, cage-like protein, whose native function is the oxidation, mineralization, and storage of iron. Unique among ferritins, its self-assembly is dependent on high ionic strength, reflecting the deep sea thermal vent environment where A. fulgidus is found. This ionic strength dependence can be used to encapsulate charged cargo within the AfFtn cavity. Its subunits self-assemble into tetrahedral symmetry, resulting in four, large (4.5 nm), triangular pores, not found in other ferritins. Due to its size (12 nm outer diameter, 8 nm inner diameter), self-assembly properties, and potential for both genetic and chemical modification, AfFtn is an ideal nanocontainer for a variety of cargo, including inorganic nanoparticles and proteins. We have sought to better understand the self-assembly of AfFtn and its encapsulation of various cargo. Guided by computational analysis and through mutagenesis, we have investigated the role of electrostatics along the AfFtn trimeric interface in self-assembly. We have developed a series of single point mutants with increasingly favorable cage assembly. One specific mutation, E65R, has a dramatic effect on AfFtn, almost entirely preventing disassembly and enhancing thermal stability by 14 C. By using a novel graphene-based microelectrode, we have determined that AfFtn maintains its quaternary structure upon encapsulation of a gold nanoparticle, developing a new tool for investigating protein-nanomaterial interactions. We have also shown that AfFtn can be used to template seeded gold nanoparticle growth and have explored two often neglected factors in ferritin-nanoparticle templating: the charge of the gold salt used, and the size of the protein pores. Our results demonstrate that the open, porous structure of AfFtn allows more efficient particle growth than typical closed-pore ferritins. Finally, we have expanded the cargo uptake of AfFtn beyond nanoparticles to include proteins, encapsulating supercharged GFP. The AfFtn-cargo complexes developed here have application in catalysis, nanomaterials synthesis, and targeted delivery.