Date of Award


Degree Type


Degree Name

Doctor of Philosophy (PhD)

Graduate Group

Cell & Molecular Biology

First Advisor

Scott E. Hensley

Second Advisor

Jeffrey M. Bergelson


Most humans are repeatedly infected with new strains of influenza throughout their lifetime even though protective neutralizing antibodies against the viral hemagglutinin (HA) are generated after both natural infection and vaccination. This observed lack of protection against variant strains is largely attributed to a process termed `antigenic drift', where accumulating mutations in HA quickly abrogate recognition by antibodies elicited by earlier strains. Consequently, current influenza vaccines must be updated frequently in an attempt to match the antigenic profiles of vaccine strains to those of circulating strains. However, the existing process of antigenic determination is imperfect: it fails to consider the effects of receptor binding avidity in the interpretation of hemagglutination inhibition (HAI) assays or the effects of pre-exposure history on how a novel virus is viewed antigenically by an altered immune system. Here, we designed a series of experiments to address these issues. First, we computationally modeled how variation in receptor binding avidity could affect the antigenic characterization of historic H3N2 strains and experimentally demonstrated that single point mutations in HA can skew HAI titers without actually affecting antibody binding. Additionally, using the same H3N2 system, we showed that a single amino acid mutation can significantly alter the immunodominance of the anti-HA antibody response. We then completed a series of studies to determine how immune history influences the specificity of antibody repertoires. In examining patient serology, we found that the specificity of the human antibody response against the 2009 pandemic H1N1 virus (pH1N1) was highly correlated with pre-exposure history to different seasonal H1N1 (sH1N1) strains during childhood. Using a ferret model, we demonstrate that the anti-pH1N1 antibody response can be shifted to highly conserved epitopes on HA when the animals were primed with sH1N1s that are otherwise antigenically distinct. Collectively, our studies demonstrate that accounting for receptor binding avidity and factors that alter antibody repertoires will improve influenza vaccination strategies in the future.

Files over 3MB may be slow to open. For best results, right-click and select "save as..."