Characterizing Local Splicing Variations From Heterogeneous Rna-Sequencing Datasets

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Cell & Molecular Biology
Discipline
Subject
Algorithm
RNA
Sequencing
Splicing
Bioinformatics
Biology
Genetics
Funder
Grant number
License
Copyright date
2022-09-09T20:20:00-07:00
Distributor
Related resources
Author
Radens, Caleb Matthew
Contributor
Abstract

Alternative splicing is a ubiquitous gene regulatory mechanism with important roles during normal development and, when dysregulated, in disease. The study of alternative splicing has been greatly facilitated by RNA-Seq. Most RNA-Seq-based splicing quantification methodologies only consider at most two mRNA isoforms at a time, but one-third of all splicing variations are complex (involve three or more isoforms). In this dissertation, I assemble pipelines and create tools for dissecting biologically relevant signals from heterogeneous RNA-Seq datasets, and then apply these tools to specific biological systems to elucidate the rule of splicing in those systems. First, I develop a data processing pipeline optimized for studying splicing from RNA-Seq and use it to promote the discovery that splicing of Esrp1 target genes is required for inner ear development and hearing. I go on to discover genes whose expression and splicing are Gsk3-dependent, which implicates Gsk3-based phosphorylation activity as a regulator of splicing in mouse embryonic stem cells. Next, I lead development of an algorithm to classify simple splicing events from complex splicing variations. I then apply this algorithm to study how splicing patterns vary across 13 brain subregions, providing the first analysis of complex splicing variations comprising non-annotated junctions and introns from the human brain. I also use the knowledge, pipelines, and tools I develop in this dissertation to discover novel transcriptomic markers of CD4+ T cells using 11 distinct RNA-Seq datasets. Finally, I quantitatively describe for the first time how batch effects impact splicing analysis, and I then develop, test, and apply a new tool to remove batch effects from RNA-Seq of 579 pediatric B cell acute lymphoblastic leukemia patients and 238 shRNA knockdown experiments. Together, the work in this dissertation provides tools and approaches that facilitate researchers’ ability to study splicing using RNA-Seq.

Advisor
Kristen W. Lynch
Yoseph Barash
Date of degree
2020-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation