Higgs Triples And Ruled Surfaces

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Mathematics
Discipline
Subject
algebraic geometry
Deformation quantization
Higgs Bundles
nonabelian hodge theory
Perverse sheaves
Poisson surfaces
Mathematics
Funder
Grant number
License
Copyright date
2021-08-31T20:20:00-07:00
Distributor
Related resources
Author
Gerapetritis, Michail
Contributor
Abstract

Aiming to understand complexes of coherent sheaves on algebraic Poisson surfaces and the associated deformation quantizations and moduli problems, we begin our study by examining the case of ruled surfaces over a smooth projective curve $X$, namely the Poisson surface will be $S=\mathbb{P}(\mathcal{O}\oplus\omega)$, where $\omega$ is the canonical line bundle of $X$. Fixing a vector bundle $F\to X$, after revisiting the background technology of \textsl{spectral data and Higgs bundles} we aim to encode $(D,,F)$-framed sheaves on $S$ as a form of \textsl{extended Higgs data} [Chapter 3], i.e. Higgs triples, as introduced by A. Minets , and $F$-prolonged Higgs bundles. We present our first main result, demonstrating the correspondence between pure $F$-prolonged Higgs bundles on $X$ and $(D,,F)$-framed torsion free sheaves on $S$, globally generated along the fibers of the natural projection. Moreover, exploring the close relation between the two types of extended Higgs data, we aim to place them in the context of perverse coherent sheaves on $X$ and examine the stability of the Higgs data as a polynomial stability in the sense of Bayer \cite{bayer}. So, using the polynomial stability given by the dual to the large volume perversity, we recover the notion of stability for Higgs triples as introduced by Minets, but also derive a stability condition for (pure) $F$-prolonged Higgs bundles, so the stable objects correspond to Huybrechts-Lehn stable $(D,, F)$-framed torsion free sheaves.

Advisor
Tony Pantev
Date of degree
2020-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation