Thermodynamic Analysis For Improving Understanding And Performance Of Hybrid Power Cycles Using Multiple Heat Sources Of Different Temperatures

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Mechanical Engineering & Applied Mechanics
Discipline
Subject
Exergo-economic analysis
Multiple heat sources with different temperatures
Power systems simulation
Thermal hybrid power cycles
Thermochemical hybrid power cycles
Thermodynamic analysis
Engineering
Mechanical Engineering
Oil, Gas, and Energy
Funder
Grant number
License
Copyright date
2018-02-23T20:17:00-08:00
Distributor
Related resources
Author
Contributor
Abstract

Past studies on hybrid power cycles using multiple heat sources of different temperatures focused mainly on case studies and almost no general theory about this type of systems has been developed. This dissertation is a study of their general thermodynamic performance, with comparisons to their corresponding single heat source reference systems. The method used in the dissertation was step-wise: to first analyze the major hybrid power cycles (e.g. Rankine, Brayton, Combined Cycles, and their main variants) thermodynamically, without involving specific operation parameter values, and develop some generalized theory that is at least applicable to each type of system. The second step was to look for commonalities among these theories and develop the sought generalized theory based on these commonalities. A number of simulation case studies were performed to help the understanding and confirm the thermodynamic results. Exergo-economic analysis was also performed to complement the thermodynamic analysis with consideration of externalities, and was compared to the conventional economic analysis method. The generalized expressions for the energy/exergy efficiency differences between the hybrid and the corresponding single heat source systems were developed. The results showed that the energy and exergy efficiencies of the hybrid systems are higher than those of their corresponding single heat source reference systems if and only if the energy/exergy conversion efficiency (defined in the dissertation) of the additional heat source (AHS, can be any heat source that has lower temperature) is larger than that of the original heat source. Sensitivity analysis results showed the relations between the temperature and heat addition rate of the AHS and the energy/exergy efficiency of the hybrid systems. Other big advantages of hybrid systems, i.e. the effects on replacement of fossil fuel by renewable, nuclear and waste energy, lower emissions and depletion of fossil fuel, were revealed in the economic analysis, by considering the cost reduction from fuel saving and carbon tax. Simple criteria were developed to help compare the hybrid and reference systems and determine under which conditions the hybrid systems will have better thermodynamic or economic performance than the reference ones. The results and criteria can be used to help design the hybrid systems to achieve higher energy and/or exergy efficiencies and/or lower levelized electricity cost (LEC) before detailed design or simulation or experiment. So far, 3 archival journal papers and 3 conference papers were published from this dissertation work.

Advisor
Noam Lior
Date of degree
2017-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation