Date of Award

Fall 2010

Degree Type


Degree Name

Doctor of Philosophy (PhD)

Graduate Group

Computer and Information Science

First Advisor

Fernando Pereira

Second Advisor

Ben Taskar


Supervised machine learning techniques have been very successful for a variety of tasks and domains including natural language processing, computer vision, and computational biology. Unfortunately, their use often requires creation of large problem-specific training corpora that can make these methods prohibitively expensive. At the same time, we often have access to external problem-specific information that we cannot alway easily incorporate. We might know how to solve the problem in another domain (e.g. for a different language); we might have access to cheap but noisy training data; or a domain expert might be available who would be able to guide a human learner much more efficiently than by simply creating an IID training corpus. A key challenge for weakly supervised learning is then how to incorporate such kinds of auxiliary information arising from indirect supervision.

In this thesis, we present Posterior Regularization, a probabilistic framework for structured, weakly supervised learning. Posterior Regularization is applicable to probabilistic models with latent variables and exports a language for specifying constraints or preferences about posterior distributions of latent variables. We show that this language is powerful enough to specify realistic prior knowledge for a variety applications in natural language processing. Additionally, because Posterior Regularization separates model complexity from the complexity of structural constraints, it can be used for structured problems with relatively little computational overhead. We apply Posterior Regularization to several problems in natural language processing including word alignment for machine translation, transfer of linguistic resources across languages and grammar induction. Additionally, we find that we can apply Posterior Regularization to the problem of multi-view learning, achieving particularly good results for transfer learning. We also explore the theoretical relationship between Posterior Regularization and other proposed frameworks for encoding this kind of prior knowledge, and show a close relationship to Constraint Driven Learning as well as to Generalized Expectation Constraints.