Dna Double Strand Breaks Suppress Expression Of The Rag Recombinase: Mechanisms And Consequences

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Immunology
Discipline
Subject
allelic exclusion
double strand break
RAG
Recombination activating gene
V(D)J recombination
Allergy and Immunology
Biology
Immunology and Infectious Disease
Medical Immunology
Molecular Biology
Funder
Grant number
License
Copyright date
2018-02-23T20:17:00-08:00
Distributor
Related resources
Contributor
Abstract

Developing B and T lymphocytes must rearrange the genomic sequence of antigen receptor genes by V(D)J recombination. The lymphocyte-specific endonuclease RAG, composed of Rag1 and Rag2, initiates this process by cleaving specific sites within antigen receptor loci. RAG expression must be carefully regulated to ensure that V(D)J recombination occurs only under appropriate circumstances. The Bassing laboratory has previously demonstrated that Igκ locus cleavage by RAG in pre-B cells initiates a feedback-inhibition signal suppressing RAG expression. Here, we show that DNA double strand breaks (DSBs) induced by a variety of genotoxic agents have a similar effect in suppressing mRNA expression of Rag1 and Rag2. This effect can be observed in pro-B cells, pre-B cells, and DN thymocytes, but is not found in DP thymocytes. Using primary pre-B cells as a model system, we show that DSBs activate ATM and Nemo to rapidly suppress transcription of Rag1 and Rag2. In pre-B cells, loss of Rag1 and Rag2 mRNA expression leads to loss of Rag1 protein, but Rag2 protein is more stable and persists in the absence of Rag2 mRNA. Suppression of Rag1 expression by DSBs is associated with suppressed RAG-mediated cleavage of the Igκ locus or an artificial recombination substrate in Abelson-transformed pre-B cells. However, simply over-expressing Rag1 does not allow cells to complete V(D)J recombination in the presence of DSBs, suggesting that other factors may also play a role in suppressing V(D)J recombination. Parallel studies indicate that that RAG-induced DSBs created during V(D)J recombination activate this suppressive signal to enforce allelic exclusion of IgH, TCRβ, and Igκ antigen receptor proteins. We discuss the importance of Rag1 and Rag2 suppression in the context of allelic exclusion and propose a role in maintaining genomic stability of developing B and T lymphocytes.

Advisor
Craig H. Bassing
Date of degree
2017-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation