Departmental Papers (Dental)

Document Type

Journal Article

Date of this Version

12-1-2018

Publication Source

Scientific Reports

Volume

8

Issue

1

Start Page

Article number 6634

DOI

10.1038/s41598-018-24888-w

Abstract

Despite the promising neuro-regenerative capacities of stem cells, there is currently no licensed stem cell-based product in the repair and regeneration of peripheral nerve injuries. Here, we explored the potential use of human gingiva-derived mesenchymal stem cells (GMSCs) as the only cellular component in 3D bio-printed scaffold-free neural constructs that were transplantable to bridge facial nerve defects in rats. We showed that GMSCs have the propensity to aggregate into compact 3D-spheroids that could produce their own matrix. When cultured under either 2D- or 3D-collagen scaffolds, GMSC spheroids were found to be more capable of differentiating into both neuronal and Schwann-like cells than their adherent counterparts. Using a scaffold-free 3D bio-printer system, nerve constructs were printed from GMSC spheroids in the absence of exogenous scaffolds and allowed to mature in a bioreactor. In vivo transplantation of the GMSC-laden nerve constructs promoted regeneration and functional recovery when used to bridge segmental defects in rat facial nerves. Our findings suggest that GMSCs represent an easily accessible source of MSCs for 3D bio-printing of scaffold-free nervous tissue constructs with promising potential application for repair and regeneration of peripheral nerve defects. © 2018 The Author(s).

Keywords

Animals, Cell Culture Techniques, Cell Differentiation, Collagen, Facial Nerve, Gingiva, Humans, Immunohistochemistry, Mesenchymal Stem Cells, Nerve Regeneration, Printing, Three-Dimensional, Rats, Tissue Scaffolds, collagen, animal, cell culture technique, cell differentiation, chemistry, cytology, facial nerve, gingiva, human, immunohistochemistry, mesenchymal stem cell, metabolism, nerve regeneration, rat, three dimensional printing, tissue scaffold

Share

COinS
 

Date Posted: 08 December 2022

This document has been peer reviewed.