Higher-Order Horn Clauses

Loading...
Thumbnail Image
Penn collection
Technical Reports (CIS)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Nadathur, Gopalan
Miller, Dale
Contributor
Abstract

A generalization of Horn clauses to a higher-order logic is described and examined as a basis for logic programming. In qualitative terms, these higher-order Horn clauses are obtained from the first-order ones by replacing first-order terms with simply typed λ-terms and by permitting quantification over all occurrences of function symbols and some occurrences of predicate symbols. Several proof-theoretic results concerning these extended clauses are presented. One result shows that although the substitutions for predicate variables can be quite complex in general, the substitutions necessary in the context of higher-order Horn clauses are tightly constrained. This observation is used to show that these higher-order formulas can specify computations in a fashion similar to first-order Horn clauses. A complete theorem proving procedure is also described for the extension. This procedure is obtained by interweaving higher-order unification with backchaining and goal reductions, and constitutes a higher-order generalization of SLD-resolution. These results have a practical realization in the higher-order logic programming language called λProlog.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1989-09-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-89-52.
Recommended citation
Collection