Technical Reports (CIS)

Document Type

Technical Report

Date of this Version

January 1990


University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-90-05.


Human agents draw a variety of inferences effortlessly, spontaneously, and with remarkable efficiency - as though these inferences are a reflex response of their cognitive apparatus. The work presented in this paper is a step toward a computational account of this remarkable reasoning ability. We describe how a connectionist system made up of simple and slow neuron-like elements can encode millions of facts and rules involving n-ary predicates and variables, and yet perform a variety of inferences within hundreds of milliseconds. We observe that an efficient reasoning system must represent and propagate, dynamically, a large number of variable bindings. The proposed system does so by propagating rhythmic patterns of activity wherein dynamic bindings are represented as the in-phase, i.e., synchronous, firing of appropriate nodes. The mechanisms for representing and propagating dynamic bindings are biologically plausible. Neurophysiological evidence suggests that similar mechanisms may in fact be used by the brain to represent and process sensorimotor information.



Date Posted: 16 January 2008