Range Image Segmentation for 3-D Object Recognition

Loading...
Thumbnail Image
Penn collection
Technical Reports (CIS)
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Discipline
Subject
GRASP
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Gupta, Alok
Contributor
Abstract

Three dimensional scene analysis in an unconstrained and uncontrolled environment is the ultimate goal of computer vision. Explicit depth information about the scene is of tremendous help in segmentation and recognition of objects. Range image interpretation with a view of obtaining low-level features to guide mid-level and high-level segmentation and recognition processes is described. No assumptions about the scene are made and algorithms are applicable to any general single viewpoint range image. Low-level features like step edges and surface characteristics are extracted from the images and segmentation is performed based on individual features as well as combination of features. A high level recognition process based on superquadric fitting is described to demonstrate the usefulness of initial segmentation based on edges. A classification algorithm based on surface curvatures is used to obtain initial segmentation of the scene. Objects segmented using edge information are then classified using surface curvatures. Various applications of surface curvatures in mid and high level recognition processes are discussed. These include surface reconstruction, segmentation into convex patches and detection of smooth edges. Algorithms are run on real range images and results are discussed in detail.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1988-05-01
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-32.
Recommended citation
Collection