Range Image Segmentation for 3-D Object Recognition
Files
Penn collection
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
Three dimensional scene analysis in an unconstrained and uncontrolled environment is the ultimate goal of computer vision. Explicit depth information about the scene is of tremendous help in segmentation and recognition of objects. Range image interpretation with a view of obtaining low-level features to guide mid-level and high-level segmentation and recognition processes is described. No assumptions about the scene are made and algorithms are applicable to any general single viewpoint range image. Low-level features like step edges and surface characteristics are extracted from the images and segmentation is performed based on individual features as well as combination of features. A high level recognition process based on superquadric fitting is described to demonstrate the usefulness of initial segmentation based on edges. A classification algorithm based on surface curvatures is used to obtain initial segmentation of the scene. Objects segmented using edge information are then classified using surface curvatures. Various applications of surface curvatures in mid and high level recognition processes are discussed. These include surface reconstruction, segmentation into convex patches and detection of smooth edges. Algorithms are run on real range images and results are discussed in detail.