Technical Reports (CIS)

Document Type

Technical Report

Date of this Version

May 1992


University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-92-36.


In this paper we demonstrate the power of reconfiguration by presenting efficient randomized algorithms for both packet routing and sorting on a reconfigurable mesh connected computer (referred to simply as the mesh from hereon). The run times of these algorithms are better than the best achievable time bounds on a conventional mesh.

In particular, we show that permutation routing problem can be solved on a linear array of size n in 3/4n steps, whereas n-1 is the best possible run time without reconfiguration. We also show that permutation routing on an n x n reconfigurable mesh can be done in time n + o(n)using a randomized algorithm or in time 1.25n + o(n) deterministically. In contrast, 2n-2 is the diameter of a conventional mesh and hence routing and sorting will need at least 2n-2 steps on a conventional mesh. In addition we show that the problem of sorting can be solved in time n+ o(n). All these time bounds hold with high probability. The bisection lower bound for both sorting and routing on the mesh is n/2, and hence our algorithms have nearly optimal time bounds.



Date Posted: 10 August 2007