Technical Reports (CIS)

Document Type

Technical Report

Date of this Version

May 1991

Comments

University of Pennsylvania Department of Computer and Information Sciences Technical Report No. MS-CIS-91-47.

Abstract

In this paper, we present a randomized algorithm for the multipacket (i.e., k - k) routing problem on an n x n mesh. The algorithm competes with high probability in at most kn + O(k log n) parallel communication steps, with a constant queue size of O(k). The previous best known algorithm [4] takes [5/4] kn + O([kn/f(n)]) steps with a queue size of O(k f(n)) (for any 1 ≤ f (n) ≤ n). We will also present a randomized algorithm for the wormhole model permutation routing problem for the mesh that completes in at the most kn + O(k log n) steps, with a constant queue size of O(k), where k is the number of flits that each packet is divided into. The previous best result [6] was also randomized and had a time bound of kn + O ([kn/f(n)]) with a queue size of O(k f(n)) for any 1 ≤ f(n). The two algorithms that we will present are optimal with respect to queue size. The time bounds are within a factor of two of the only known lower bound.

Share

COinS
 

Date Posted: 30 July 2007