A Process Algebra of Communicating Shared Resources With Dense Time and Priorities

Loading...
Thumbnail Image
Penn collection
Technical Reports (CIS)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Brémond-Grégoire, Patrice
Contributor
Abstract

The correctness of real-time distributed systems depends not only on the function they compute but also on their timing characteristics. Furthermore, these characteristics are strongly influenced by the delays due to synchronization and resource availability. Process algebras have been used successfully to define and prove correctness of distributed systems. More recently, there has been a lot of activity to extend their application to real-time systems. The problem with most current approaches is that they ignore resource constraints and assume either maximum parallelism (i.e., unlimited resources) or pure interleaving (i.e., single resource). Algebra of Communicating Shared Resources (ACSR) is a process algebra designed for the formal specification and manipulation of distributed systems with resources and real-time constraints. A dense time domain provides a more natural way of specifying systems compared to the usual discrete time. Priorities provide a measure of urgency for each action and can be used to ensure that deadlines are met. In ACSR, processes are specified using resource bound, timed actions and instantaneous synchronization events. Processes can be combined using traditional operators such as nondeterministic choice and parallel execution. Specialized operators allow the specification of real-time behavior and constraints. The semantics of ACSR is defined as a labeled transition system. Equivalence between processes is based on the notion of strong bisimulation. A sound and complete set of algebraic laws can be used to transform almost any ACSR process into a normal form.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1995
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-95-08.
Recommended citation
Collection