Guaranteed Conformance of Neurosymbolic Models to Natural Constraints

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CIS)
Degree type
Discipline
Subject
CPS Safe Autonomy
CPS Medical
CPS Formal Methods
Deep neural networks
prototypes
robotics
medical devices
Computer Engineering
Computer Sciences
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

Deep neural networks have emerged as the workhorse for a large section of robotics and control applications, especially as models for dynamical systems. Such data-driven models are in turn used for designing and verifying autonomous systems. This is particularly useful in modeling medical systems where data can be leveraged to individualize treatment. In safety-critical applications, it is important that the data-driven model is conformant to established knowledge from the natural sciences. Such knowledge is often available or can often be distilled into a (possibly black-box) model M. For instance, the unicycle model for an F1 racing car. In this light, we consider the following problem - given a model M and state transition dataset, we wish to best approximate the system model while being bounded distance away from M. We propose a method to guarantee this conformance. Our first step is to distill the dataset into few representative samples called memories, using the idea of a growing neural gas. Next, using these memories we partition the state space into disjoint subsets and compute bounds that should be respected by the neural network, when the input is drawn from a particular subset. This serves as a symbolic wrapper for guaranteed conformance. We argue theoretically that this only leads to bounded increase in approximation error; which can be controlled by increasing the number of memories. We experimentally show that on three case studies (Car Model, Drones, and Artificial Pancreas), our constrained neurosymbolic models conform to specified M models (each encoding various constraints) with order-of-magnitude improvements compared to the augmented Lagrangian and vanilla training methods.

Advisor
Date of presentation
2022-12-09
Conference name
Departmental Papers (CIS)
Conference dates
2023-05-18T04:47:00.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection