
Departmental Papers (CIS)
Date of this Version
10-2017
Document Type
Conference Paper
Recommended Citation
Jaewoo Lee, Hoon Sung Chwa, Linh T.X. Phan, Insik Shin, and Insup Lee, "MC-ADAPT: Adaptive Task Dropping in Mixed-Criticality Scheduling", International Conference on Embedded Software (EMSOFT 2017) 16(5s), 163:1-163:21. October 2017. http://dx.doi.org/10.1145/3126498
Abstract
Recent embedded systems are becoming integrated systems with components of different criticality. To tackle this, mixed-criticality systems aim to provide different levels of timing assurance to components of different criticality levels while achieving efficient resource utilization. Many approaches have been proposed to execute more lower-criticality tasks without affecting the timeliness of higher-criticality tasks. Those previous approaches however have at least one of the two limitations; i) they penalize all lower-criticality tasks at once upon a certain situation, or ii) they make the decision how to penalize lowercriticality tasks at design time. As a consequence, they underutilize resources by imposing an excessive penalty on lowcriticality tasks. Unlike those existing studies, we present a novel framework, called MC-ADAPT, that aims to minimally penalize lower-criticality tasks by fully reflecting the dynamically changing system behavior into adaptive decision making. Towards this, we propose a new scheduling algorithm and develop its runtime schedulability analysis capable of capturing the dynamic system state. Our proposed algorithm adaptively determines which task to drop based on the runtime analysis. To determine the quality of task dropping solution, we propose the speedup factor for task dropping while the conventional use of the speedup factor only evaluates MC scheduling algorithms in terms of the worst-case schedulability. We apply the speedup factor for a newly-defined task dropping problem that evaluates task dropping solution under different runtime scheduling scenarios. We derive that MC-ADAPT has a speedup factor of 1.619 for task drop. This implies that MC-ADAPT can behave the same as the optimal scheduling algorithm with optimal task dropping strategy does under any runtime scenario if the system is sped up by a factor of 1.619.
Subject Area
CPS Model-Based Design, CPS Real-Time
Publication Source
International Conference on Embedded Software (EMSOFT 2017)
Volume
16
Issue
5s
Start Page
163:1
Last Page
163:21
DOI
10.1145/3126498
Date Posted: 07 November 2017
This document has been peer reviewed.
Comments
International Conference on Embedded Software (EMSOFT 2017), Seoul, South Korea, October 15 - 20, 2017