Departmental Papers (CIS)

Date of this Version


Document Type

Conference Paper


2011 IEEE International Conference on Service-Oriented Computing and Applications, Dec. 2011.


In this paper, we explore the challenges and needs of current cloud infrastructures, to better support cloud-based data-intensive applications that are not only latency-sensitive but also require strong timing guarantees. These applications have strict deadlines (e.g., to perform time-dependent mission critical tasks or to complete real-time control decisions using a human-in-the-loop), and deadline misses are undesirable. To highlight the challenges in this space, we provide a case study of the online scheduling of MapReduce jobs executed by Hadoop. Our evaluations on Amazon EC2 show that the existing Hadoop scheduler is ill-equipped to handle jobs with deadlines. However, by adapting existing multiprocessor scheduling techniques for the cloud environment, we observe significant performance improvements in minimizing missed deadlines and tardiness. Based on our case study, we discuss a range of challenges in this domain posed by virtualization and scale, and propose our research agenda centered around the application of advanced real-time scheduling techniques in the cloud environment.

Subject Area

CPS Real-Time

Publication Source

IEEE International Conference on Service-Oriented Computing and Applications (SOCA)

Start Page


Last Page




Copyright/Permission Statement

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Date Posted: 26 July 2012