Departmental Papers (CIS)

Date of this Version


Document Type

Conference Paper


17th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Chicago, April 2011.


We present a unified framework for the specification and analysis of mode-change protocols used in multi-mode realtime systems. We propose a highly expressive formalism, called MCP, to model the system behavior during mode transitions, and show how various existing mode change protocols can be described as MCPs. The explicit representation of the MCP model provides a means to analyze the system state during a mode transition as well as during an intra-mode execution. We introduce the concept of feasibility with respect to the MCP model, and give a decidable method for checking the feasibility of a MCP for a given multi-mode system. The formalization of mode change behaviors using the MCP model allows a range of mode change protocols to be modeled, evaluated, and optimized to the specific operations and performance requirements of the system. Besides feasibility analysis, it is also possible to analyze other system behaviors (e.g., delay between modes, buffer backlog) using automata verification techniques. Our framework can also be used to describe mode change semantics of multi-mode systems whose modes/transitions have different criticality levels, or of systems composed of multiple multi-mode components that require different mode change protocols.

Subject Area

CPS Real-Time

Publication Source

17th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2011)

Start Page


Last Page




Copyright/Permission Statement

© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Date Posted: 26 April 2011

This document has been peer reviewed.