Formal Methods Based Development of a PCA Infusion Pump Reference Model: Generic Infusion Pump (GIP) Project

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CIS)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Jetley, Raoul
Jones, Paul
Contributor
Abstract

As software becomes ever more ubiquitous and complex in medical devices, it becomes increasingly important to assure that it performs safely and effectively. The critical nature of medical devices necessitates that the software used therein be reliable and free of errors. It becomes imperative, therefore, to have a conformance review process in place to ascertain the correctness of the software and to ensure that it meets all requirements and standards. Formal methods have long been suggested as a means to design and develop medical device software. However, most manufacturers shy from using these techniques, citing them as too complex and time consuming. As a result, (potentially life-threatening) errors are often not discovered until a device is already on the market. In this paper we present a safety model based approach to software conformance checking. Safety models enable the application of formal methods to software conformance checking, and provide a framework for rigorous testing. To illustrate the approach, we develop the safety model for a Generic Infusion Pump (GIP), and explain how it can be used to aid software conformance checking in a regulatory environment.

Advisor
Date of presentation
2007-06-25
Conference name
Departmental Papers (CIS)
Conference dates
2023-05-17T01:53:56.000
Conference location
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Postprint version. Presented at Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability, June 2007.
Recommended citation
Collection