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ABSTRACT

THEORETICAL STUDIES AND AB INITIO SIMULATIONS OF HETEROGENEOUS

PHENOMENA ON SURFACES AND INTERFACES

Tian Qiu

Andrew M. Rappe

With decades of studies on matter and energy conversion in catalysis, electrochemistry, and

material engineering, the importance of material surfaces and interfaces has been widely

realized. The flexible tunability of morphology, composition, and local geometry by the

pressure, temperature, chemical potential, and other experimental controlling methods has

convinced researchers that a broad and profound understanding of phenomena at surfaces

and interfaces provides new mechanisms and paradigms to solve the challenging problems

people are currently facing. However, different from studies of a single phase where sym-

metries and isotropy can usually simply the problem, the heterogeneity of surfaces and

interfaces leads to the intrinsic complexity in studies of these system. With the develop-

ment of computers and theories of computational chemistry, theoretical studies through

large-scale modeling and ab initio simulation have become a powerful approach to deci-

pher the heterogeneous phenomenon. In this thesis, we present our studies in different

fields to demonstrate that how theoretical studies enrich the understanding of the hetero-

geneous phenomena in these fields. In the field of catalysis and electrochemistry, how the

reaction mechanism of the oxygen evolution reaction is modified by the hydrated surface

of CaMnO3 is explained; in the field of material design and synthesis, how unstable phases

can be stabilized by the substrate is presented; and in the field of matter transport, how an

hierarchical nanoporous structure increases the total ion diffusion rate is proposed. In or-

der to find stable surface reconstructions under different chemical potential, an automated

searching algorithm based on the ab initio grand canonical Monte Carlo simulation is also

iv
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Introduction
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The heterogeneous phenomenon is broadly involved in many fields where surfaces and

interfaces are systems of interest. On one hand, the potential fruitful discoveries and knowl-

edge in the heterogeneous phenomenon has drawn great attention of researchers, but on the

other hand, the complexity of the problem slows down the pace in investigations. Com-

pared with experiments, the ab initio simulations have unique advantages in tackling this

problem, because the information of atomic positions, electronic structures, reaction mech-

anisms, and many other physical and chemical quantities can be revealed in details. How-

ever, the length scale of the involved system is usually too large such that a direct simulation

of the full system is not feasible. Carefully chosen assumptions and approximations have to

be made to simplify the problem such that the the simulation is both practical and reliable.

In this thesis, we aim to present how the studies of the heterogeneous phenomenon can

be accomplished for some topics in the field of catalysis, electrochemistry, and material

designing, and how the conclusions drawn by the simulation enhance our understandings

in these fields.

Chapter 2 summaries the relevant theories and methodologies used in this thesis. Chap-

ter 3 demonstrates an improvement to a computational scheme with which the ab initio

simulation of large-scale heterogeneous system can be made feasible.

In Chapter 4, a study of the oxygen evolution reaction (OER) is presented. OER is the

cathode reaction of the water splitting process through which the electric energy is con-

verted into the chemical energy. On cathode the half reaction undergoes a four-electron-

transfer procedure, i.e. 2H2O −→ O2 + 4H+ + 4e− in the acidic condition or 4OH− −→

O2 + 2H2O + 4e− in the alkaline condition. On anode the half reaction is 2H+ + 2e− −→

H2 in the acidic condition and 2H2O + 2e− −→ H2 + 2OH− in the alkaline condition. The

problem of this process is that the required electrode potential is usually higher than what

Nernst equation predicts assuming the process is reversible. The extra electrode potential,

known as the overpotential, causes the energy cost and reduces the energy conversion effi-
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ciency. Since the majority of the overpotential is introduced by OER, extensive studies have

been made on this process. Researchers have proposed a mechanism that the four-electron-

transfer process can be decomposed into four single-electron-transfer process, with the

intermediates ∗OH, ∗O, ∗OOH, and ∗O2, respectively, where the asterisk stands for that the

species are adsorbed on the surface of the electrode material. Detailed studies suggest that

an intrinsic overpotential cannot be avoided in the mechanism, because the energy differ-

ence between ∗OH and ∗OOH do not match the optimal electrode potential and this energy

difference can hardly be influenced by the surface that the intermediates adsorb on. What

is shown by us in Chapter 4 is that, by the thoughtful studies of the fully reconstructed

and hydrated surfaces of CaMnO3, the surface oxygen vacancy can participate in OER and

influence the intermediates such that the scaling between ∗OH and ∗OOH is broken, and

hence the intrinsic overpotential in OER can be avoided.

In Chapter 5, we show how the stability of an epitaxially growing thin film on the

substrate can be predicted through ab initio simulations. By calculating the formation

energy of possible phases from a ternary system with the constraint that these phases are

epitaxially registered onto the the substrate, a ternary phase diagram is constructed. This

phase diagram represents the coexistence between phases, where the ones coexisting with

the substrate are predicted stable. By applying this method to the Ba-Ti-O2 ternary system

with BaTiO3 (001) surface as the substrate, we found that the naturally unstable rock-salt

type Ti4O5 and TiO phases can be stabilized. This result explains the observation of the

rock-salt type TiOx layer on the BaTiO3 (001) surface under the electron beam irradiation.

Furthermore, this work implies that, instead of discovering what phases is stable on the

substrate, it is possible to revert the process and use the ab initio simulations to predict what

substrate can stabilize a naturally unstable material, which extend our ability in designing

functional materials because the question of stability can be separated and becomes an

independent study.
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An important question arising from Chapter 4 and 5 is to find the stable surfaces or

surface reconstructions of a material under given condition. the traditional method is to

use the chemical intuition to list all possible candidates with different compositions and

structures, and enumerate through them to find the most stable one. This approach is useful

when the intuition of the system is well established, or in other words, the system or similar

systems have be widely studied such that the knowledge about the stability is known. The

limitation of this approach however, is also clear: the construction of possible phases for

a complicated system is exhaustive, and the intuition of a rarely studied system is ques-

tionable. Moreover, the discovery of the most stable surfaces or surface reconstructions is

usually the first step in many studies, so an automated procedure is desired to focus major-

ity of efforts on the rest part of the problem. In Chapter 6, we propose an algorithm that

shows how the surface discovery procedure can be automated through the ab initio grand

canonical Monte Carlo simulation. By deploying this method to the Ag-O system, we show

that it can reproduce the building block of the most stable surface reconstructions found in

experiments with almost no input from human intuitions. Since this algorithm generates

a large database for surface reconstructions of the interested system, we have also applied

the machine learning techniques to reveal the key features that control the surface stability

of this system.

In Chapter 7, we investigated the geometric effect of the electrode surface to the ca-

pacity of the sodium ion battery. Sodium ion battery is the battery where the sodium ion

(Na+) is the charge carrier in the electrolyte and participates in reactions on the cathode

and the anode. The chemical potential for Na on the anode is higher than that on the cath-

ode, so when the battery discharges, the electron is released from the anode into the circuit

outside the battery while Na+ is released into the electrolyte inside the battery. As Na+

migrates from the anode towards the cathode, the electron moves in the same direction but

through the circuit outside the battery. The chemical energy released from the chemical
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potential differences of Na between the anode and the cathode is then converted into the

electric energy. This process is reversed during the charging process, where the electric

energy is converted into the chemical energy. A problem of this system is that the anode

material undergoes huge volume change during the charging-discharging cycle such that

the electrode material cracks and electrons cannot be collected at the anode. As such, the

capacity will be significantly reduced. To overcome this issue, a nanoporous morphology is

designed to accommodate the volume change during the charging-discharging cycle. What

is discovered in our work is that, by introducing pores with radii orders greater than the

nano-pores, the capacity of the material can be further enhanced by approximately 50%.

We use the kinetic Monte Carlo simulation to show that this enhancement can be attributed

to the increase of the active surface area by creating large pores. The rationale is that the

nano-pores are too small such that most of the surface from nano-pores are inactive, in the

sense that they do not have direct contact with the electrolyte so Na+ cannot diffuse into the

material through them. The surface area exposed by larger pores do not have such problem

and is always considered active. Since the capacity of a battery is measured within a certain

charging duration, the enhancement of the charging kinetics increases the measured battery

capacity. To provide a general study of this geometric effect, We have also proposed an

analytic model to predict the active surface area of such hierarchical porous material.
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Chapter 2

Theory and Methodology
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2.1 Density Functional Theory

The development of quantum mechanics has significantly increased human’s understanding

in physics and chemistry. However, the governing equation of the quantum world in the

non-relativistic condition, i.e., Schrödinger equation, is extremely complicated to solve for

the many-particle system with interactions, see Equation 2.1:

−i~ ∂
∂t

Ψ(~r1, ~r2, ..., ~rN ; t) = HHH(~r1, ~r2, ..., ~rN)Ψ(~r1, ~r2, ..., ~rN ; t)

HHH(~r1, ~r2, ..., ~rN) = TTT (~r1, ~r2, ..., ~rN) + VVV (~r1, ~r2, ..., ~rN)

=
N∑
j=1

T̃̃T̃T (~rj) + VVV (~r1, ~r2, ...~rN)

(2.1)

HHH is the Hamiltonian of the system, TTT is the total kinetic energy of the system, and V is the

potential of the system. Since the kinetic energy term is usually separable, one can treat it

as the sum of the kinetic energy of each particle, i.e. T̃̃T̃T , the potential term however, is not

separable if interactions exist. The cost for solving this equation increases exponentially

as the number of particles increases, hence attempts to find a solution of the system by

directly solving Equation 2.1 is infeasible.

2.1.1 Hohenberg-Kohn Theorem

One of the most important fundamental theorem for the modern quantum chemistry calcu-

lation reveals that all quantities of the system are uniquely determined by an one variable

object, the particle density ρ(~r) of the ground state [2], which is defined as:

ρ(~r) := N

ˆ
d~r2d~r3...d~rN |Ψ0(~r, ~r2, ~r3...~rN)|2 (2.2)
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Where Ψ0(~r, ~r2, ~r3...~rN) is the ground state many-body wavefunction of the system, N is

the number of particles. The Hohenberg-Kohn theorem can be rigorously stated as follows:

• For any system of interacting particles in an external potentialVVV ext(~r), the potential is

uniquely determined by the particle density ρ(~r) if the ground state is not degenerate,

except for a constant.

The proof of this theorem is rigorous and simple. Suppose two different external potentials

VVV 1
ext(~r) and VVV 2

ext(~r) have the same ground state particle density ρ(~r), with the correspond-

ing ground state wavefunctions Ψ1(~r, ~r2, ~r3...~rN) and Ψ2(~r, ~r2, ~r3...~rN), respectively. The

Hamiltonian of each system is

HHH1 = TTT + VVV ee + VVV 1
ext (2.3)

and

HHH2 = TTT + VVV ee + VVV 2
ext (2.4)

respective, where TTT is the kinetic energy operator and VVV ee is the electron-electron interac-

tion operator. The variational principle states that

〈Ψ1|HHH1|Ψ1〉 < 〈Ψ2|HHH1|Ψ2〉 (2.5)

which is equivalent to

〈Ψ1|TTT + VVV ee|Ψ1〉 − 〈Ψ2|TTT + VVV ee|Ψ2〉 <
ˆ
d~r(VVV 2

ext(~r)− VVV 1
ext(~r))ρ(~r) (2.6)

On the other hand,

〈Ψ2|HHH2|Ψ2〉 < 〈Ψ1|HHH2|Ψ1〉 (2.7)
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which is equivalent to

〈Ψ2|TTT + VVV ee|Ψ2〉 − 〈Ψ1|TTT + VVV ee|Ψ1〉 <
ˆ
dr(VVV 1

ext(~r)− VVV 2
ext(~r))ρ(~r) (2.8)

Adding Equation 2.6 and 2.8 together, one achieve

0 < 0 (2.9)

This can never be true. Therefore, two different external potentials must give two different

ground state particle density functions. Since one ρ(~r) cannot be the ground state particle

density of two different external potentials, it determines one unique external potential.

Since the external potential determines all properties of the system, the ground state

charge density also determines all properties of the system. Therefore, there exists a uni-

versal functional of charge density for the total energy, i.e.

Etot = E[ρ] (2.10)

On the other hand, the energy contribution from the external potential

Eext =

ˆ
d~rVVV ext(~r)ρ(~r) (2.11)

is also a functional of the charge density, the functional for the total energy can be written

as

Etot = Ekinetic+ee[ρ] +

ˆ
d~rVVV ext(~r)ρ(~r) (2.12)

i.e., the kinetic energy plus the electron-electron interaction energy together is also a func-

tional of the charge density.
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2.1.2 Kohn–Sham Equation

Although the Hohenberg-Kohn Theorem shows that in principle the complex many-body

problem can be studied through a single variable function, the proof does not provide a

technical way to realize it. It is Kohn and Sham [3] who made an ansatz and proposed a

Schrödinger-like one-body equation such that DFT becomes a practical method rather than

staying as a philosophy. In their approach, they replaced the interacting many-body system

with an auxiliary system. They assumed that the ground state charge density is the same

as the charge density of a non-interacting system, and that the Hamiltonian of the auxiliary

system has the usual kinetic energy operator and an effective local potential which itself is

a functional of the charge density. For systems with two spins, the charge density is

ρ(~r) =
∑
σ

ρσ(~r) =
∑
σ

Nσ∑
i=1

|ψσi (~r)|2 (2.13)

Where σ denotes different spins, ρσ(~r) is the density for the spin state σ, Nσ is the occupa-

tion number for each spin channel, and ψσi (~r) is the ith eigenwavefunction of the auxiliary

Hamiltonian.

The total energy of the system in the Kohn-Sham framework is

EKS[ρ] = TKS[ρ] + Eext[ρ] + EHartree[ρ] + Exc[ρ] (2.14)

where Eext[ρ] =
´
d~rVVV ext(~r)ρ(~r), EHartree[ρ] =

´
d~rd~r′ ρ(~r)ρ(~r′)

|~r−~r′| is the classical electron-

electron Coulomb interaction energy, and Exc[ρ] is the exchange-correlation energy that

accounts for many-body interactions. Compare Equation 2.14 with Equation 2.14, the

exchange-correlation energy term is

Exc[ρ] = Ekinetic+ee[ρ]− TKS[ρ]− EHartree[ρ] (2.15)
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The ground state charge density minimizes the total energy of the system, so it also

minimizes the total energy of the Kohn-Sham system. The solution can be carried out

through the variational principle. Since the kinetic energy of a non-interacting system is an

explicit functional of the single electron wavefunction, the variation of total Kohn-Sham

equation is performed with respect to the wavefunction:

δEKS

δψσ∗i (~r)
=

δTKS

δψσ∗i (~r)
+

(
Vext(~r) + Vhartree(~r) +

δExc

δρ(~r)

)
δρ(~r)

δψσ∗i (~r)
= 0 (2.16)

subject to the constraints

〈ψσi |ψσ
′

j 〉 = δi,jδσ,σ′ (2.17)

Since δTKS
δψσ∗i (~r)

= −1
2
∇2ψσi (~r) and δρ(~r)

δψσ∗i (~r)
= ψσi (~r), and apply the constraints using the

Lagrange multipliers, Equation 2.16 can be written as

(
− 1

2
∇2 + Vext(~r) + Vhartree(~r) +

δExc

δρ(~r)

)
ψσi (~r) = εσi ψ

σ
i (~r) (2.18)

By defining Vxc(~r) = δExc
δρ(~r)

and Veff(~r) = Vext(~r) + Vhartree(~r) + Vxc(~r), Equation 2.18

becomes a quasi-Schrödinger equation with a charge density-dependent potential. Since

Vext is the normal external potential, Vhartree(~r) + Vxc(~r) can be viewed as the screening

to the potential due to the response of the charge density to the external potential. If the

expression of Vxc(~r) is known, Equation 2.18 can be solved in an self-consistent way.

2.1.3 Local Density Approximation and Beyond

The first approximation one can made for Exc is that the exchange and correlation energies

are determined locally by a local exchange-correlation energy density, i.e.

Exc =

ˆ
d~rρ(~r)εxc(ρ(~r)) (2.19)
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This is usually referred to as the local density approximation (LDA). Since εxc(ρ(~r)) is

a universal function, one can apply this framework to the homogeneous electron gas and

achieve its formula. The exchange energy density of the homogeneous gas is given by a

simple analytic form:

εx(~r) = −3

4

(
3

π

) 1
3

ρ
1
3 (~r) (2.20)

The correlation energy density does not have an analytic formula but can be fitted with high

precision to the result of an accurate simulation, for example, the Quantum Monte Carlo

simulation.

The success of LDA in systems where electron-electron interactions are weak leads to

varies improvements to the functional in order to extend the condition that DFT is reliable.

By introducing the amplitude of the charge density gradient |∇ρ(~r)|, people have proposed

a family of functional referred to as the generalized-gradient approximation (GGA) func-

tional, and by further including the Laplacian of the charge density ∇2ρ(~r), people have

proposed more sophisticated functional known as the meta-GGA functional. Besides this

serial of extension, exhaustive work has been done to overcome the tendency in DFT that

electrons prefer to be delocalized. This class of improvement tries to cancel the delocaliza-

tion error in DFT by introducing a fraction of the exchange energy from the Hartree-Fork

method, which has errors in the opposite direction. The functional arising from this idea is

know as the hybrid functional.

2.2 Pseudopotential

Real electronic structure calculations can be further simplified in two ways. Since the core

states do not usually contributes to the bonding of the system, they can be removed from

the system in most of the case; The strongly oscillated wavefunctions near the nuclei have

limited effect to the electronic structure and therefore can be replaced with a smooth func-

12



tion. Both of these two simplifications require to modify the − Z
|~r| Coulomb-type potential.

This demand leads to the study of a field known as “pseudopotential”.

2.2.1 Norm-conserving Pseudopotential

While pseudopotentials can be empirically fitted to enforce the smoothness as well as to

reproduce the experimental electronic band structure, people have tried to find an “ab ini-

tio” method to generate pseudopotentials without the aid from experiments. One of the well

studied scheme in this direction leads to the pseudopotential known as the norm-conserving

pseudopotential (NCPP). [4]

In this approach, the pseudopotential generated from a reference electron configuration

satisfies the following criteria:

• The pseudo valence states and the real valence states of the reference electron con-

figuration for an isolated atom have the same eigenvalues.

• The pseudo valence wavefunctions and the real valence wavefunctions of the ref-

erence electron configuration for an isolated atom are identical for r greater than a

threshold rc.

• The integrated charged density from 0 to r > rc of the pseudo valence wavefunctions

and the real valence wavefunctions for an isolated atom are identical.

• The logarithmic derivatives and their first energy derivatives of the pseudo valence

wavefunctions and the real valence wavefunctions for an isolated atom are the same

for r > rc.

The first two criteria allow NCPP to represent the correct chemical behavior for the

reference electron configuration, while the last two criteria are necessary such that the

chemical behavior for electron configurations different from the reference configuration is
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correct. This property is referred to as the “transferbility” of the pseudopotential. To be

specific, the third criterion guarantees that the electrostatic potential outside rc are identical

for the real and pseudo charge distribution. The forth criterion, guarantees that the scat-

tering properties of the real ion cores are reproduced with minimum error by the pseudo

core when eigenvalues are shifted from the atomic energy levels. It is found that these two

criteria are mathematically identical:

2π

[
r2ψ2 d

dε

d

dr
lnψ

]
R

= 4π

ˆ R

0

drr2ψ2 (2.21)

To generate a NCPP that satisfies these four criteria, the first step is to choose a refer-

ence configuration. An ab initio calculation is performed to solve this isolated single-atom

system to achieve the wavefunctions and the eigenvalues. Since the system has the spheri-

cal symmetry, this problem can be simplified as the one-dimensional radial problem which

can be solved efficiently. With these “all-electron” eigenvalues and wavefunctions, the rc

value will then be chosen such that the wavefunctions do not have any nodes for r < rc.

Since the tail of the wavefunctions as well as the integrated charge density for r > rc,

the wavefunction for r < rc can be freely chosen under the constraint that the norm is

a constant. Once the pseudo wavefunction is achieved, the Kohn-Sham equation will be

inverted:

Veff(r) =
∇2ψpseudo

2ψpseudo
+ ε (2.22)

to find the effective potential that this wavefunction is supposed to be solved from. Since

the charge density is known, the screening terms VHartree and Vxc can be directly calculated

and subtracted off from Veff to achieve the desired pseudopotential.

For systems with multiple valence orbitals, the extension to the approach mentioned

in the previous section is not straightforward, because for the real system the potential is

the same for all wavefunctions but the NCPP approach requires a unique potential for each
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valence state. Two more techniques are developed to handle this problem.

2.2.2 Kleinman-Bylander Nonlocal Form

If the valence orbitals with the same orbital quantum number l do not have different princi-

pal quantum number n, one can construct a nonlocal pseudopotential that uses the angular

part (spherical harmonics) to separate them, so called HSC pseudopotential [4]:

V HSC(r) = V local(r) +
∑
lm

|Ylm〉∆Vl(r) 〈Ylm| (2.23)

Where ∆Vl(r) = Vl(r)−V local(r). It can be shown that the effect of this potential on states

ψlm with the orbital quantum number l are equivalent to Vl(r):

V HSC(r)ψlm

=V local(r)ψlm +
∑
l′m′

(
Yl′m′(θ, φ)∆Vl′(r)

ˆ
dΩY ∗l′m′(θ, φ)Ylm(θ, φ)ψlm(r)

)
=V local(r)ψlm + Ylm(θ, φ)∆Vl(r)ψlm(r)

=V local(r)ψlm + (Vl(r)− V local(r))ψlm

=Vl(r)ψlm

(2.24)

However, the HSC pseudopotential in Equation 2.23 requires many efforts to be im-

plemented into practical quantum chemistry calculations for solids where the basis set is

the plane-wave, because the expansion of HSC pseudopotential on the plane-wave basis

requires huge number of integrals (O(n2) where n is the number of plane-wave basis func-

tions). A modified version of the pseudopotential, know as the Kleinman-Bylander (KB)

form [5], reduced the number of integrals from O(n2) to O(n). The KB form of the pseu-
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dopotential is as follows:

V KB(r) = V local(r) +
∑
lm

|∆Vl(r)ψlm〉 〈ψlm∆Vl(r)|
〈ψlm|∆Vl(r)|ψlm〉

(2.25)

where ψlm are eigenstates of the reference configuration. Similar as the HSC pseudopoten-

tial, The effect of V KB(r) on ψlm is equivalent to Vl(r) on ψlm:

V KB |ψlm〉

=V local |ψlm〉+

(∑
l′m′

|∆Vlψl′m′〉 〈ψl′m′∆Vl|
〈ψl′m′|∆Vl|ψl′m′〉

)
|ψlm〉

=V local |ψlm〉+
|∆Vlψlm〉 〈ψlm|∆Vl|ψlm〉

〈ψlm|∆Vl|ψlm〉

=(V local + ∆Vl) |ψlm〉

=Vl |ψlm〉

(2.26)

People also call Equation 2.23 the semi-local form and Equation 2.25 the nonlocal form, in

the sense that whether the radial part of the potential is local or not.

2.2.3 Ghost State

Although NCPP guarantees the correct scattering properties, the pseudopotential in KB

form may sometimes result in incorrect electronic structure. A detailed study [6] shows that

this is because the pseudopotential in the KB form does not obey the Wronskian theorem.

This theorem implies that, for the same orbital quantum number l, eigenwavefunctions with

more nodes in the radial part have higher energies. Since this theorem only works for the

local potential while the pseudopotential in the KB form are nonlocal, some “ghost states”

with nodes may exist with lower energy than eigenstates of the reference configuration.

The total charge density, which sums over eigenstates sequentially from the lowest energy

one up until the number of electron pairs, will be incorrect.
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Gonze et al. [6] have also presented the criteria to examine whether the ghost exists or

not, and proposed possible approaches to avoid the ghost state. Their discovery relies on

three quantities: El, E local
l , and EKB

l , where El is the energy of the reference state, E local
l is

the energy of the eigenstate of only the local potential, and EKB
l is defined as follows:

EKB
l = 〈Rl|∆Vl|Rl〉 (2.27)

where Rl is the radial part of the pseudo wavefunction. They found that a ghost state with

the energy lower than El exists in the following two conditions:

• EKB
l < 0 and El > E local,0

l

• EKB
l > 0 and El > E local,1

l

whereE local,0
l andE local,0

l are ground and first exited state of the local potential, respectively.

The authors have also found from calculations that, besides these two conditions that

the ghost states have the lower energy than the reference state, in some cases the ghost

states with the higher energy present and can also distort the system. This often happens

when EKB
l is close to zero so the nonlocal term nearly diverges. An empirical solution is to

change rc such that EKB
l can be away from zero.

2.2.4 Semicore

For some elements, especially the first a few transition metal elements of each row in the

periodic table, the d orbitals penetrate deep into the core states and some s and p core states

are not strongly bounded, the interaction between the core states and the valence states

are not neglectable. In this situation these inner s or p core states also have to be pesu-

dosized, usually referred to as the semicore state. Pseudopotentials with semicore states

can not be directly generated from Equation 2.22, because the valence wavefunctions must
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have nodes that cause the singularity in the inversion of Kohn-Sham equation. Instead, the

non-uniqueness of pseudopotentials can be used such that the excited state of the pseu-

dopotential generated from the core state satisfies all four NCPP criteria. Some technical

details can be found in [7].

2.2.5 Other techniques

One purpose of using a pseudopotential is to reduce the computational cost by replacing

the highly oscillatory wavefunctions with the smooth wavefunction. The reason that the

smoothness of the wavefunction influences the computational cost is that, on the plane-

wave basis a smoother wavefunction requires less plane waves to describe, and therefore the

dimension of Hamiltonian is smaller. A key discovery for calculations on the plane-wave

basis is that the minimum cutoff energy of the basis is not determined by the smoothness

of the potential, but how fast the kinetic energy convergence is reached. To be specific, the

cutoff energy, or the cutoff wave vector qc is chosen that

ˆ ∞
qc

d3qq2|ψ(q)|2 (2.28)

is smaller than the energy accuracy threshold, where ψ(q) is the pseudo eigenstate in

Fourier space. Since the choice of the pseudo wavefunction is no unique, Equation 2.28 can

be minimized with the NCPP criteria. Pseudopotentials generated with this consideration

is referred to as the optimized pseudopotential.

Although NCPP criteria guarantees the scattering properties near the energy of the ref-

erence state, it does not guarantees the transferability towards a configuration that differs

too much, for instance, from a neutral ground state to a +2 ionic ground state. Although

there is no analytic way to design a pseudopotential that the transferability is rigorously

minimized, some techniques can be applied to mitigate this error. One idea is based on the
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fact that the choice of the local potential in KB form is not unique. For the potential in the

form of Equation 2.25, the following potential is also a valid NCPP:

Ṽ KB(r) = V local(r)+V designed(r)+
∑
lm

|∆Vl(r)ψlm − V designed(r)〉 〈ψlm∆Vl(r)− V designed(r)|
〈ψlm|∆Vl(r)− V designed(r)|ψlm〉

(2.29)

where V designed(r) is an arbitrary function ranging from 0 to rc. The effect of Ṽ KB(r) in

Equation 2.29 on the eigenstates of the reference configuration is identical to the Vl(r):

Ṽ KB |ψlm〉

=(V local + V designed) |ψlm〉+

(∑
l′m′

|(∆Vl − V designed)ψl′m′〉 〈ψl′m′(∆Vl − V designed)|
〈ψl′m′|∆Vl − V designed|ψl′m′〉

)
|ψlm〉

=(V local + V designed) |ψlm〉+
|(∆Vl − V designed)ψlm〉 〈ψlm|∆Vl − V designed|ψlm〉

〈ψlm|∆Vl − V designed|ψlm〉

=(V local + V designed + ∆Vl − V designed) |ψlm〉

=Vl |ψlm〉

(2.30)

With this degree of freedom, the transferability of pseudopotentials can be improved by

choosing a V designed(r) to minimize the error in the eigenvalues and the tail norms of wave-

functions for several choices of the chemically relevant configurations. Pseudopotentials

generated with this treatment is referred to as the designed pseudopotential.

2.3 Molecular Dynamics Simulation

Although ab initio calculations have satisfactory precision in predicting chemical reactions

and electronic structures of the system, the high computational demand restricts its appli-

cation to large systems. Classical molecular dynamics (MD) simulation is a complement

because the simulation is based on the classical Newton’s equation that can be deployed to
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systems with millions of atoms.

Since classical MD deals with large systems, it has a close connection to statistical me-

chanics, where ensemble averages are quantities of interest. An important concept is the

ergodic hypothesis, which assumes that the system can visit all possible states at equilib-

rium. Under this hypothesis, the time average of the quantity equals the ensemble average.

Using the canonical ensemble as an example, the ensemble average is

〈G〉 =

´
dq1dq2...dqMdr1dr2...drMG(q1, q2, ..., qM , r1, r2, ..., rM)e−βU(q1,q2,...,qM ,r1,r2,...,rM )´

dq1dq2...dqMdr1dr2...drMeβU(q1,q2,...,qM ,r1,r2,...,rM )

(2.31)

and the time average is

〈G〉T =
1

N

N∑
i=1

G(q1, q2, ..., qM , r1, r2, ..., rM) (2.32)

Since the time average is much easier to calculate than the ensemble average, is it used to

evaluate the properties of the system in most of the cases.

2.3.1 Micro-Canonical Ensemble and Energy Conservation

The simplest ensemble is the micro-canonical ensemble, or the NV E-ensemble. In this

ensemble, the system is an isolated system without work, heat transfer, or matter transfer

with the environment. The system either has a periodic boundary condition or the collision

between particles and walls are elastic. The energy of the system is conserved and the

equation that governs the evolution of the system is Newton’s equation:

~F = m~a (2.33)

Newton’s equation is a differential equation so the numerical solution requires the nu-
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merical integral of this equation. Although the total energy of the system should be a

constant for conserved forces under Newton’s equation, the total energy may drift when

integrating the equation of motion numerically. This error may be mitigated by choosing

a smaller time increment, but it will increase the computational cost and is not always a

feasible solution. Fortunately, a variety of integration methods are discovered that for a

long simulation time, the total energy of the system does not decay or explode, but instead

oscillates around a constant with errors bounded by the time increment. One of the most

commonly used method is call the Velocity Verlet algorithm. In this algorithm, the position

and the velocity are updated in this way:

x(t+ ∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2

v(t+ ∆t) = v(t) +
1

2
(a(t) + a(t+ ∆t))∆t

(2.34)

where a(t) and a(t+ ∆t) are calculated from x(t) and x(t+ ∆t), respectively. This algo-

rithm is also applied to other ensembles to avoid the systematic energy drift from numerical

errors.

2.3.2 Canonical Ensemble and Thermostat

In many cases, people are interested in MD simulations under the constant temperature

rather than under the constant energy, for instance, one may want to simulate an experiment

under a given temperature, or one may want to investigate the temperature-driven phenom-

ena. For these cases, one first need to define an instantaneous temperature of the system,

then employ some treatments that enforce this temperature to reach the target temperature.

These treatments are referred to as the thermostat of the isothermal MD simulation.

21



Velocity Rescaling Thermostat

The simplest thermostat is the velocity rescaling thermostat. In this approach, the temper-

ature is defined as

Tins :=
2

(3N −Nt −Nr)kb
Kins (2.35)

where N is the number of particles, Nt is the translation degrees of freedom of the system,

Nr is the rotation degrees of freedom of the whole system, kb is the Boltzmann constant,

and Kins is the instantaneous kinetic energy of the system, which is given by

Kins =
N∑
i=1

1

2mi

|~pi|2 (2.36)

where mi and vi are the mass and the velocity of each particle, respectively.

The rationale is from the equalpartition theorem, that for each generalized variable xi

or pi, if it appears only in the quadratic term in the Hamiltonian, then

〈xi
∂H

∂xj
〉 = δi,jkbT

〈pi
∂H

∂pj
〉 = δi,jkbT

(2.37)

where 〈...〉 is the ensemble average of the quantity at equilibrium. With this theorem, the

internal kinetic energy of the system at equilibrium is

〈K〉 =
3N −Nt −Nr

2
kbT (2.38)

Therefore, when the system reaches the equilibrium, Tins reaches the target temperature T .

With the definition in Equation 2.35, the velocity rescaling thermostat controls the tem-

perature as the term suggested, that to scale the velocity such that the instantaneous temper-

ature matches the target temperature. To be specific, the velocity is multiplied by a constant
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λ after each or a few iterations:

2

(3N −Nt −Nr)kb

N∑
i=1

1

2mi

|λ~pi|2 = T (2.39)

The left-hand-side (LHS) of the above equation is just λ2Tins, hence the scaling factor in

the velocity rescaling thermostat is

λ =

√
T

Tins
(2.40)

Although this algorithm is easy to understand, it causes significant fluctuations in particle

velocities that are not desired, which will influence the calculation of many quantities that

relies on the linear response theory. Therefore this algorithm is not commonly used in real

simulations but rather with the pedagogical meaning.

Berendsen Thermostat

The first improvement is named after Berendsen for his work in this field [8]. This approach

starts with a physical picture, that the system couples to a heat bath homogeneously. With

this picture, the equation of motion for each particle is modified by introducing a damping

term and a random noise term, i.e. the Langevin equation:

mi
d~vi
dt

= ~Fi − γmi~vi + ~Ri(t) (2.41)

where ~Ri(t) is a random variable with the following property

〈Riσ(t)Rjσ′(t+ τ)〉 = 2miγkbTδ(τ)δijδσσ
′ (2.42)

σ labels the Cartesian direction and T is the temperature of the heat bath.
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Figure 7.3: An illustration of the simulation in the 2-dimensional case. Each pixel repre-
sents one site. Colors: red, the occupied site; blue, the unoccupied site; white, the void site;
yellow, the active edge site.

(a) (b)

Figure 7.4: Diffusion rate at different combination of small pores and large pores. The
lower left vertex stands for the case of the pure bulk that no pores are created. Following
the red line the number of large pores increases such that the density of the porous system
ρ is reduced by a factor of e0.1, and following the green line the number of small pores
increases such that the density is reduced by the same factor. The blue dashed lines connect
points that where systems have the same density. (a) Dmax = rsmall (b) Dmax = 3rsmall.
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pores to optimize the diffusion rate. Without any constraints, the diffusion rate is enhanced

by increasing the number of both large pores and small pores. For the real system however,

at least two types of constraints exist such that the diffusion rate has a limit. The mechanical

stability should set a threshold for the density of the material ρmin, and the stability of the

porous structure should set a threshold for the surface-to-mass ratio γmax. An intuitive

choice is to push the system to the boundaries of these two constraints by increasing the

number of both small and large pores, but simulation results suggests that this is not always

the best choice. Using Figure 7.4a as an example, a given γ always favors large pores

since red lines have greater slopes than green lines at any conditions. A given ρ value

however, does not have such monotonic property. As indicated by the blue dashed line, the

maximum diffusion rate is neither at the pure large pore side nor the pure small pore side,

but requires a balance between these two. Therefore, if the threshold γmax is greater than γ

at the maximum of what ρmin suggests, i.e. the blue dashed line, one should not create too

many small pores to reach γmax, but rather create enough large pores to reach the maximum

of what ρmin suggests.

7.4 Analytic Model for Active Surface Area

In order to quantitatively evaluate how the active surface area depend on number of small

and large pores, as well as the characteristic parameters of pores, an analytic model is

proposed to predict the active surface area for systems with pores randomly generated.

Our model is that pores with two different surface-to-volume ratios are randomly gener-

ated in a bulk material. The active surface area is the surface area of all large pores and bulk

boundaries, plus surfaces of small pores if the distance to bulk boundaries or large pores

are smaller than a threshold D. To derive the expression for the active surface area, we first

consider a generic case, that a bulk with the volume V0 and k types of pores randomly gen-

133



erated in the material. Define V (n1, n2, . . . , nk) and S (n1, n2, . . . , nk) as the remaining

volume and the surface area of the material with n1, n2, . . . , nk numbers of each type of

pore, respectively, define s1, s2, . . . , sk as the surface area of each type of pore, and define

v1, v2, . . . , vk as the volume of each type of pore, we will first show the expressions for

V (n1, n2, . . . , nk) and S (n1, n2, . . . , nk), then drive an expression for the active surface

area. For the simplicity of the notation, V and S will be used instead of V (n1, n2, . . . , nk)

and S (n1, n2, . . . , nk) when there is not ambiguity.

7.4.1 Remaining Volume and Surface Area

When trying to create a new pore in the material, the remaining volume inside the new pore

will be removed. Since only V
V0

of the space is filled with the material, the actual removed

volume is vj VV0
, where j is the index of the type of pore that will be generated. Therefore

∂V

∂nj
= −vj

V

V0

(7.1)

The solution to this equation is

V = V0e
−

∑k
j=1 njvj

V0 (7.2)

Changes in S is a bit complicated since it contains two terms, that the increase of surface

area exposed by the new pore sj VV0
, and the removal of already-existing surface area (from

previous pores) inside, ∂V
∂nj

S
V

= −vj VV0

S
V

= −vj SV0
. Hence,

∂S

∂nj
= sj

V

V0

− vj
S

V0

(7.3)

The factor of V
V0

in the sj terms has the following reason: the actual surface area exposed

in a porous material needs to be scaled down by the percent of volume that still remains. A
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heuristic example is to draw a curve on a chessboard and ask what the length of the curve

in the light square is. The answer is 1
2

of the total length of the curve because the curve in

light squares has the same length as the curve in dark squares. Solving Equation 7.3 needs

some efforts but one can confirm that:

S =

(
k∑
j=1

njsj

)
e
−

∑k
j=1 njvk
V0 (7.4)

is the solution.

7.4.2 Active Surface Area

Returning to the question of the active surface area, one can calculate the active surface

area as the total surface area minus the inactive surface area. Denote the small pores with

the index “1” and the large pores with the index “2”. The total surface area is

S total = Sb
V (n1, n2)

V0

+ S (n1, n2) (7.5)

where Sb is the area of the initial bulk boundaries. The factor V (n1,n2)
V0

has the same rationale

as the factor of V
V0

in Equation 7.3.

The inactive surface area is the total surface area from small pores minus the active

surface area from small pores. The surface area of all small pores is S (n1,0) V (0,n2)
V0

, that

surface area of small pores created in the volume fraction that is not large pores. Since

surface areas from small pores are active only when they are close enough (in the sense of

the threshold D) to bulk boundaries or surfaces of large pores, the expression for the active

small pore area is (
Sb

V (0,n2)
V0

+ S (0, n2)
)
D

V0

S (n1,0) (7.6)

where Sb
V (0,n2)
V0

+ S (0, n2) is the surface area of the bulk boundaries plus the large pores,
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(
Sb

V (0,n2)
V0

+ S (0, n2)
)
D is the volume in which small pores are active, and

(
Sb

V (0,n2)
V0

+S(0,n2)
)
D

V0

is the fraction of small pore areas that are active. Therefore, the inactive surface area is:

S inactive = S (n1,0)
V (0, n2)

V0

−
(
Sb
V (0, n2)

V0

+ S (0, n2)

)
D
S (n1,0)

V0

(7.7)

The active surface area is then Equation 7.5 minus Equation 7.7. After the substitution of

Equation 7.2 and Equation 7.4, it yields:

Sactive = (Sb + n2s2)

(
1 +

Dn1s1

V0

)
e
− n1v1+n2v2

V0 (7.8)

By defining the surface-to-volume ratio of the initial bulk γ0 = Sb
V0

, the surface-to-volume

ratio of the small pore γ1 = s1
v1

, the surface-to-volume ratio of the large pore γ2 = s2
v2

, and

by defining the nominal removed volume ratio for small pores and large pores, x1 = n1v1

V0
,

x2 = n2v2

V0
, respectively, Equation 7.8 can be rewritten as

Sactive = (γ0 + γ2x2) (1 +Dγ1x1)V0e
−(x1+x2) (7.9)

And the active surface area per remaining volume is

Γactive =
Sactive

V0e−(x1+x2)
= (γ0 + γ2x2) (1 +Dγ1x1) (7.10)

By further constraining a minimum density the system can reach due to the stability issue,

i.e. e−(x1+x2) = e−X0 , and write x2 = X0 − x1, the active surface area per remaining

volume is a quadratic function of the nominal removed volume ratio of small pores:

Γactive = (γ0 + γ2 (X0 − x1)) (1 +Dγ1x1) (7.11)
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The maximum is reached when x1 = X0

2
− 1

2Dγ1
+ γ0

2γ2
.

The validity of this model is testified by fitting the iso-density KMC results to a quadratic

curve, as shown in Figure 7.5. The sodiation rate versus x1 is an excellent quadratic curve,

especially when averaging over more simulations. Parameters calculated from the fitted

curve agrees well with the simulation setup. The discrepancy of predicted D/rS to the

simulation setup dues to a systematic error of calculating the area of a small pore on the

cubic grid. By further assuming that D ≈ rS, k1 ≥ 3
rS

(the equal sign is taken for the case

of spherical pore), and γ0 � γ2, one achieves that X0

2
≥ x1 ≥ X0

2
− 1

6
. Since x1 = X0

2

represents the situation that small pores and large pores contribute equally to the relative

density, this result suggests that under the constraint on the density of the material, one

should reach the maximum of the active surface area by mixing small pores and larges

such that large pores have the same or slightly greater contribution to the relatively surface

area than small pores.

Another question one can ask is that, what is the maximum active surface are one can

reach by creating pores in a bulk material with a given volume V0, and how to reach this

condition. To answer this questions, return to Equation 7.9 and find the maximum of the

expression with respect to both x1 and x2. The maximum is reached when x1 = Dγ1−1
Dγ1

,

and x2 = γ2−γ0

γ2
. Since γ2 is usually greater than γ0 while Dγ1 may not be greater than 1,

creating large poles is always suggested.
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Figure 7.5: Verification of the analytic model. Parameters from the quadratic fitting agrees
well with the true parameters used in the KMC simulations. rS and rL are the radii of
the small and large pores, respectively, L0 is the length of the cubic system, and D is the
threshold to determine whether surfaces of small pores are active or not. (a) Sodiation rate
averaged over 48 simulations, (b) and (c) Sodiation rate averaged over 480 simulations.
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Chapter 8

Terahertz-Field-Induced Ferroelectricity

in Quantum Paraelectric SrTiO3

This chapter is a slightly amended version of Ref. [197]
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8.1 Introduction

SrTiO3 (STO) is a widely-used dielectric material that has a cubic perovskite structure at

room temperature. Many members of this crystal family, e.g. PbTiO3, undergo transitions

into FE phases in which the transition-metal ions occupy positions that are displaced from

the unit cell center so that the material has a macroscopic electric polarization. The col-

lective pathway between the cubic, paraelectric phase and the FE phase involves motions

of the ions along the soft phonon coordinate. In contrast, upon reduction of the tempera-

ture to 105K, STO undergoes an antiferrodistortive (AFD) structural phase transition into a

second paraelectric phase of tetragonal symmetry [198,199]. Further cooling reveals mode

softening (decrease in frequency ω) in the usual Curie-Weiss form ω ∝ (T − Tc)1/2 with

critical temperature Tc = 36K [200], but at such a low temperature the zero-point quantum

uncertainties in ion positions prevent long-range FE ordering of their locations. Thus STO

is a textbook example of a so-called quantum paraelectric (QPE) phase [200], in which

dipole correlation lengths do not extend beyond nanometer length scales [201]. Recently,

studies have shown that the QPE state in STO is a result of a more complex competition

among three driving forces [202, 203], i.e. quantum fluctuations, AFD structural distor-

tions (rotations of neighboring oxygen octahedral in opposite directions), and ferroelectric

ordering. As a result, even subtle perturbations such as 18O isotope substitution [204] are

able to turn STO ferroelectric.

In recent years, significant advances have been made in the search for materials with

complex multi-phase landscapes that host photo-induced meta-stable collective states, or

“hidden” phases. These phases are rarely accessible on equilibrium phase diagrams and

may persist long after the external stimuli that induced them are over. Recent experi-

ments [205–210] have illustrated some of the possibilities and expanded our understanding

of non-equilibrium material properties and dynamics. In some cases, ultrafast resonant ex-
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citation of crystal lattice vibrations (phonons) has played the key role in reaching hidden

metallic and superconducting phases [205, 206]. In this work, the experimental collab-

orators extend this capability in the discovery of a hidden ferroelectric (FE) phase in the

paradigmatic material STO. They accessed the hidden phase by selectively exciting the soft

phonon mode that serves as a collective reaction coordinate along which ions move from

their initial positions toward their positions in the new phase, using a terahertz (THz) light

field to move the ions into their positions in the incipient crystalline phase. This case was

foreshadowed by molecular dynamics (MD) simulations of THz field-induced switching

between different FE domain orientations, a closely related type of “collective coherent

control” [211].

8.2 Experimental Background

The experimental collaborators show that intense coherent THz excitation of the FE soft

modes in STO can lead to highly nonlinear phonon responses that overcome the quantum

fluctuations and yield clear signatures of an ultrafast QPE-to-FE phase transition. The

observed signals reveal a dramatic rise in ferroelectric ordering and restructuring of phonon

spectra beyond a threshold THz field strength, indicating the emergence of the collective

FE phase.

Two complementary experiments were carried out with single-cycle THz pump pulses

and time-delayed optical probe pulses. THz-field-induced second-harmonic (TFISH) gen-

eration spectroscopy [212] was conducted to observe signals that arise from inversion-

symmetry breaking due to coherent soft mode lattice vibrational motion away from the

initially centrosymmetric structure of the QPE phase. THz field-induced optical birefrin-

gence (THz Kerr effect, or TKE) spectroscopy [213] was performed to characterize Raman-

active phonon responses that were driven nonlinearly by the THz-initiated soft mode lat-
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tice vibrations. Figure 8.1 shows TFISH measurement results from STO and their Fourier

transforms at several temperatures and THz field amplitudes. At temperatures above 30

K, a single mode that softens with decreasing temperature consistent with the ferroelectric

soft mode [199] is observed. The coherent vibrational displacements in either direction

break the symmetry, resulting in optical second harmonic signals that oscillate at twice

the soft mode frequency. There is also a non-oscillatory signal component due to THz-

induced orientation of dipoles, whose decay becomes slower as T is reduced due to the

increasing dipolar correlation [214]. In the QPE phase at T < 36 K, two features in the

signals change dramatically at high THz field amplitudes. First, the non-oscillatory signal

component grows in a highly nonlinear fashion as a function of the field strength. This

indicates a dramatic growth in the extent of steady-state (non-oscillatory) dipole order-

ing [215]. Second, additional phonon signatures appear with amplitudes that also increase

in a highly nonlinear fashion with THz field strength. These features reveal additional ionic

displacements that take place as the FE crystal structure is formed. At soft mode ampli-

tudes sufficient to reach the new phase, collective displacements of other phonon modes

(coupled nonlinearly to the soft mode) are induced. The THz-induced ordered structure

is noncentrosymmetric, so oscillations about this structure produce changes in the second

harmonic signal level that oscillate at the phonon frequencies, not twice the frequencies.

It is noteworthy that the three distinct low-frequency peaks in the TFISH response at high

field strength harden gradually as T is reduced, as is known to occur for the soft modes in

SrTi18O3 below its ferroelectric phase transition temperature [204]. A broad phonon fea-

ture at 1.3 THz is observed whose frequency does not appear to change with temperature

and whose signal strength does not increase as sharply as the lower-frequency peaks. This

behavior is consistent with a Raman-active A1g mode (the “A1g” label is retained even

though the crystal symmetry has been changed) [216] that is coupled anharmonically to the

soft mode. Similar nonlinear coupling has been observed in room-temperature STO using

142



femtosecond x-ray diffraction [217].

Figure 8.2 shows TKE data recorded at several sample temperatures and THz field

strengths. Although the optical and THz pulses propagate with very different velocities in

STO [213,218], the strong THz absorption [219] ensures that this does not affect the time-

dependent signals. At high temperatures, as shown in Figure 8.2A, only non-oscillatory

signals are observed. Unlike such signals in the TFISH data, these signals show only

weakly T -dependent decay kinetics and they do not increase dramatically as functions of

either temperature or THz field amplitude. They are associated with dipole alignment rather

than ferroelectric orientation, or polarity. The A1g mode at 1.3 THz is also observed and

increases quadratically with THz field strength, indicating ordinary anharmonic coupling

to the FE soft mode as suggested above. By far most striking is the emergence of several

low-frequency phonon features whose strengths depend in a highly nonlinear fashion on the

THz field strength, clearly similar to what we observed in TFISH measurements. The mea-

surements suggest that at sufficiently large soft mode amplitudes, an ultrafast ferroelectric

phase transition is triggered. The strong non-oscillatory TFISH signals reveal the associ-

ated increase in FE ordering. The modes that grow in sharply as the THz field amplitude

is increased reveal significant collective displacements of ions along multiple vibrational

modes that are coupled nonlinearly to the soft mode and also reveal the change in lattice

symmetry. It has been suggested that excitation of the Raman modes may provide con-

structive feedback to the FE soft mode that drives them by disrupting the balance between

antiferrodistortive and ferroelectric structural distortions [202, 203], thereby dynamically

destabilizing the paraelectric ground state on a multidimensional energy landscape.
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Figure 8.1: STO symmetry breaking measured by optical second harmonic generation
(TFISH). (A) Temperature-dependent TFISH signals recorded at 550 kV/cm field ampli-
tude from STO and (B) their Fourier transforms. The ferroelectric soft mode is observed
above 30 K, and new phonon peaks as well as non-oscillatory signals appear at lower tem-
peratures. (C) THz field-strength-dependent TFISH signals measured at 5 K and (D) their
Fourier transforms. Signals at low field strengths are magnified by the amounts indicated in
the figure for better visibility. Dramatic changes in the non-oscillatory signal components
and the phonon spectra occur when the THz field level is increased above 340 kV/cm.
The numerical first derivatives of the time-domain signals were calculated before Fourier
transformation to reduce the relative amplitude of the non-oscillatory components.
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Figure 8.2: Strongly nonlinear phonon responses appear in the low-symmetry STO
phase. (A) Temperature dependence of THz-induced optical depolarization (TKE) sig-
nals recorded with 630 kV/cm THz pump field amplitude and (B) their Fourier transforms.
The numerical first derivatives of the time-domain signals were calculated before Fourier
transformation to reduce the relative amplitude of the non-oscillatory components. At tem-
peratures 60 K and above (see Supplement), no oscillatory signal is observed after THz
excitation. The 1.3 THz peak and additional low-frequency modes appear at low tempera-
tures. (C) THz field strength dependence of the TKE spectra at 10 K. New peaks grow in
sharply as the THz field level is increased from 470 to 630 kV/cm. Inset: quadratic fit to
the 1.3 THz A1g mode. The 0.8 THz mode shows faster than quadratic scaling in the THz
field strength.
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8.3 Mode Projection with MD Simulation

In order to understand the details of the THz-induced phenomena, we performed classical

MD simulations in LAMMPS [220] for a 20× 20× 20 supercell in an isothermal-isobaric

ensemble (NPT ), where the temperature is controlled at 5K by Nosé–Hoover thermostat,

and the pressure was controlled by Parrinello-Rahman barostat [221]. Pressures were set

to 11.2 GPa, 11.2 GPa, and 11.0 GPa along the x, y, and z axis, respectively, yielding the

corresponding lattice constants 3.89Å, 3.89Å, and 3.90Å respectively. The thermal inertia

parameter Ms in Nosé–Hoover thermostat was chosen to be 3.0 amu. The profile of the

applied electric field pulse is shown in Figure 8.4A. Forces on ions under the electric field

are calculated from Born effective charge tensors (Z∗Sr = 2.56, Z∗Ti = 7.40, Z∗O⊥ = −2.08,

and Z∗O‖ = −5.80) [222].

To assign the vibration modes in MD simulations excited by the electric field, A DFT

simulation was run on a 2×2×2 STO supercell (40 atoms total) in the tetragonal phase and

the 120 mass-weighted normal modes were determined. These were taken to represent the

zone-center normal modes of the 20 × 20 × 20 supercell for which MD simulations were

run as described above. Time-dependent trajectories calculated with THz fields (centered at

11.5 ps as shown in Figure 8.4A) of 0, 200, 400, 600, and 800 kV/cm amplitudes were used

to determine the subset of zone-center modes along which the fields induced significant dis-

placements. A power spectrum was calculated from the autocorrelation function of each

trajectory in the 14-24 ps time interval, revealing peaks with frequencies of 0.8, 1.4, 1.6,

2.0, 2.2, and 2.6 THz as shown in Figure 8.4B. Fourier transforms of the mass-weighted

trajectories at each of these six frequencies were performed over 10-ps time intervals and

the spatially varying Fourier coefficients were projected onto each of the 120 zone-center

normal modes. The results are shown in Figure 8.5. The Fourier transforms of these modes

at the same six frequencies, shown in Figure 8.6, confirm the mode assignments. The am-
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plitudes of all four modes increase nonlinearly and then saturate as the THz field strength is

increased, as expected for a THz-induced phase transition and consistent with Figure 8.4B,

Figure 8.3A and the experimental results. A time-dependent projection of the 600 kV/cm

trajectory onto the four assigned modes is shown in Figure 8.3B of the main paper for short

times and in Figure 8.7 for the full 50 ps simulation. The result indicates some net polar-

ization even at 50 ps, but the simulation does not include quantum fluctuations that may

return the real crystal to the paraelectric state on shorter time scales.

For each MD simulation, the system was first relaxed for 100 ps to reach equilibrium

at 5 K, and then a Gaussian-profile electric field pulse with full-width at half-maximum

duration of 0.66 ps was applied in either the z or x crystallographic direction. Trajectories

of the system were collected for 50 ps, with the electric field reaching its maximum at 11.5

ps. To evaluate whether the electric field could induce ferroelectricity in STO, simulations

were performed with different field amplitudes, and in each case the global polarization

of the system was calculated from the collected trajectories. As shown in Figure 8.3A,

the induced polarization rises sharply over a narrow range of applied field amplitudes, sat-

urating at around 300 kV/cm along both the x and z directions. The important result of

the simulations is the confirmation that a single-cycle THz field can induce a substantial

global FE polarization when the field is above a threshold level on the order of 200 kV/cm.

By calculating the projections of the MD simulation trajectory along different lattice vi-

brational mode coordinates, we also confirmed that the key displacements occur along the

ferroelectric soft mode and the coupled antiferrodistortive mode coordinates, whose calcu-

lated time-dependent responses are shown in Figure 8.3B. The soft mode response is driven

directly by the THz field and reaches its peak at the same time as the peak field. The AFD

modes are driven indirectly through their anharmonic coupling to the FE soft mode, and

their peak displacements are delayed as a result. The soft mode and the AFD modes show

steady-state displacements that persist well after the THz field is gone, indicating relaxation
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of the coupled system into the FE structure.

8.4 Conclusion

The experimental data and molecular dynamics simulations together demonstrate a THz-

induced ultrafast quantum-paraelectric-to-ferroelectric phase transition in STO. The THz

field drives the soft mode, and additional coupled-mode displacements occur to reach the

FE structure. Our results demonstrate collective coherent control of material structure that

may be applicable to a wide range of classical and quantum phase transitions in which soft

phonon modes play key roles in the collective structural transformations.
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Figure 8.3: MD simulation of response to STO THz excitation. (A) The peak global po-
larization induced by excitation with a THz field along different crystallographic axes. A
threshold electric field amplitude of about 300 kV/cm is needed in order to fully polar-
ize the crystal. (B) MD simulation trajectory projection onto different vibrational mode
coordinates. The FE soft mode response is driven directly and peaks at the same time as
the z-polarized THz field (dashed vertical line). The antiferrodistortive (AFD) modes are
driven through coupling to the FE soft mode, and reach their maximum displacements after
a delay. A steady-state AFD mode displacement (dashed green line shows time-averaged
value) as well as FE soft mode displacement remain well after the THz driving field is over.

Figure 8.4: Simulated THz field and driven lattice vibrational responses. (A) Profile of
the applied electric field pulse used in MD simulations. (B) Power spectra calculated from
trajectories in the 14 ps to 24 ps time interval with various THz field amplitudes.
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Figure 8.5: THz-induced normal mode responses. (A-F) Fourier amplitudes at the six
frequency peaks in Figure 8.4B for each of the 120 zone-center normal modes, calculated
over 10-ps time intervals. The values along the horizontal axis represents the starting points
of the 10 ps time intervals. The FE soft mode and the three AFD modes are displayed in
the colors indicated. All the other normal mode projections are in black.
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Figure 8.6: Soft mode and coupled mode amplitudes driven by different THz field
strengths. (A-D) Fourier transforms of the FE soft mode and the AFD modes at the six
peak frequencies in Figure 8.4B, over the 10-ps time intervals during which their max-
imum amplitudes were reached. The 0.8 THz peak frequency of the soft mode and the
1.6 THz peak frequency of the AFD modes confirm the mode assignments for those peaks.
Amplitudes of all the modes increase nonlinearly and then saturate as the THz field strength
is increased.
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Figure 8.7: Projection of the trajectory onto the assigned normal modes over the full 50-ps
simulation time. The results at short times are displayed in Figure 8.3B of the main text.
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Chapter 9

Future Direction
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Two possible directions arise from the project studying OER. Since the limitation from

the scaling relationship can be broken when the lattice vacancy participates in the reaction,

one direction is to continue reducing thermodynamic overpotential of OER by tuning the

energy levels of intermediates through ion substitution and other methods. The purpose is

to find a material that the overpotential is lower than what the scaling theory predicts, and

seek for collaborators to verify the result experimentally.

The other direction is to apply the same logic followed by the study of OER to other

systems. Since the nature of the scaling relationship is rooted in the difference of intro-

molecule bond strength over the reaction intermediates, a single-site adsorption model fre-

quently predicts the scaling relationship in a variety of systems. A possible direction is to

engineer the surface or to find the surface reconstruction of a catalyst that intermediates

at different steps prefer different adsorption geometries. By providing examples through a

family of such studies, it is possible to find new rules from this pattern and to development

a corresponding new theory for catalysis.

The project of the ab initio GCMC simulation completes its first stage by showing that

a stable surface reconstruction can be successfully discovered. This is the starting point that

many other projects can build on. The algorithm can be slightly modified to find the stable

composition or structure of an complex alloy, or to simulate the growth and morphology of

nanoparticles. By replacing the acceptance rate derived from the grand canonical ensemble

with the criteria that prefer a certain condition, for instance to minimize the activation

energy of one reaction, the algorithm can automate the discovery of catalysts that boost

such reaction.

Still in terms of the ab initio GCMC project, another direction focuses on extending the

computational capability of this method. Due to the high cost of the ab initio calculation,

currently this method is only feasible for systems with the number of atoms less than 100.

In order to extend the capability of this method to simulations of large systems, a classi-
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cal force field with reliability in a broad range of chemical environment is desired. This

is a challenging direction because the many-body quantum nature can not be accurately

described by a simple classical formula in general. One possible choice is to construct the

force field through an machine learning procedure with the active learning technique. This

technique asks for the training data that improves the reliability of the model most during

the training process. The purpose of using this techniques is two folds. If the resulting

potential satisfies the desired precision in all chemical conditions, the force field will be

directly adopted in GCMC simulations. If the generated force field is not accurate enough,

one can trace back the active learning procedure to the iteration when the in-sample error

is small, and collect all training data that the active learning procedure asks for after this

iteration. If these configurations are not physically relevant, one can use the force field in

an ad-hoc way, that to manually add a penalty to the unphysical configruation.
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