
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Publicly Accessible Penn Dissertations 

2017 

Regular Programming Over Data Streams Regular Programming Over Data Streams 

Mukund Raghothaman 
University of Pennsylvania, rmukund@seas.upenn.edu 

Follow this and additional works at: https://repository.upenn.edu/edissertations 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Raghothaman, Mukund, "Regular Programming Over Data Streams" (2017). Publicly Accessible Penn 
Dissertations. 2540. 
https://repository.upenn.edu/edissertations/2540 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2540 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/edissertations
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F2540&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F2540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2540?utm_source=repository.upenn.edu%2Fedissertations%2F2540&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/2540
mailto:repository@pobox.upenn.edu


Regular Programming Over Data Streams Regular Programming Over Data Streams 

Abstract Abstract 
Data streams arise in a variety of applications, such as feeds from financial markets, event streams from 
sensors and medical devices, logs produced by long-running programs, click-streams from websites, and 
packet sequences passing through internet routers. In this thesis, we are concerned with computing 
quantitative statistics over these streams, and with expressing transformations in the related domain of 
strings. Many string transformations are instances of simple patterns, such as inserting, deleting and 
replacing substrings, or applying a function to each element in the stream. Over data streams, the task is 
usually to compute some simple quantitative statistic, such as counting the number of occurrences of a 
pattern or the mean time between occurrences of an event. 

There has traditionally been limited programming language support for stream processing, and 
programmers are forced to write low-level code, by manually maintaining state and updating it on seeing 
each new input element. This sacrifices both ease of expression and amenability to static analysis. We 
propose a simple, expressive programming model for stream transformations, with strong theoretical 
foundations and fast evaluation algorithms. 

We present two concrete systems: DReX, to express string-to-string transformations, and quantitative 
regular expressions (QREs) for numerical queries. Both formalisms start with a set of basic functions and 
a small collection of hierarchically composable combinators, analogous to the operations of regular 
expressions. The operators are simple to describe, and can be used to combine small, easy-to-understand 
expressions into more complicated expressions. 

The functions expressible using DReX and QREs coincide with the class of regular string transformations, 
which is a robust class with multiple characterizations and appealing closure properties (under 
composition, input reversal, and regular look-ahead). We present a single-pass linear-time evaluation 
algorithm for function expressions, and study efficient approximate representations of numerical terms, 
so that some numerical QREs can also be evaluated with sub-linear memory requirements. 

Degree Type Degree Type 
Dissertation 

Degree Name Degree Name 
Doctor of Philosophy (PhD) 

Graduate Group Graduate Group 
Computer and Information Science 

First Advisor First Advisor 
Rajeev Alur 

Keywords Keywords 
Data streams, Programming languages, Quantitative analysis, Regular expressions 

Subject Categories Subject Categories 
Computer Sciences 

This dissertation is available at ScholarlyCommons: https://repository.upenn.edu/edissertations/2540 

https://repository.upenn.edu/edissertations/2540


REGULAR PROGRAMMING OVER DATA STREAMS

Mukund Raghothaman

A DISSERTATION
in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in

Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2017

Supervisor of Dissertation Graduate Group Chairperson

Rajeev Alur Lyle Ungar
Zisman Family Professor of
Computer and Information Science

Professor of Computer and
Information Science

Dissertation Committee
Susan Davidson, Weiss Professor of Computer and Information Science
Sanjeev Khanna, Henry Salvatori Professor of Computer and Information Science
Benjamin Pierce, Henry Salvatori Professor of Computer and Information Science
Moshe Vardi, Karen OstrumGeorge Distinguished Service Professor in Computational
Engineering, Rice University



Acknowledgements

First and foremost, I would like to thank my advisor, Rajeev Alur. This thesis would not have
been possible without his support and guidance.

My thesis committee consisted of Susan Davidson, Sanjeev Khanna, Benjamin Pierce,
and Moshe Vardi: I thank them for the careful reading of this document and suggestions
for improvement. I would also like to thank Youssef Hamadi and Yi Wei for hosting me at
Microsoft Research Cambridge for two exciting and productive summers.

One of the best parts about working with Rajeev is the wonderful group of postdocs and
research scientists he assembles. Dana Fisman, Kostas Mamouras, and Arjun Radhakrishna
deserve special mention: their keen eye for detail has contributed immeasurably towards
making this a more rigorous and better presented thesis. Christos Stergiou, Ashutosh Trivedi,
and Jyotirmoy Deshmukh provided great guidance at various stages of this Ph.D. journey.
Jyotirmoy was the one who pushed me to follow up what would become my first research
paper, and continues to be a rich source of technical problems and an excellent sounding
board for ideas.

Over six years and innumerable cups of coffee, Abhishek Udupa and I have become close
friends and professional collaborators. The cohort of Rajeev’s Ph.D. students—Abhishek, Loris
D’Antoni, Salar Moarref, Yifei Yuan, and Nimit Singhania—formed an amazing and lively
peer group with which to discuss research problems.

My office-mates in GRW 571—Salar, Nan Zheng, Kai Hong, and Shaheen Jabbari—have
each contributed in their little way to the successful completion of this thesis. Arjun Ravi
Narayan taught me a lot: from writing code to economics trivia and general wisdom about
life. Mike Felker greatly simplified and helped me navigate the bureaucracy associated with
being an international Ph.D. student.

Outside the department, Varun Aggarwala, Carin Molenaar, the ECE Lobby from college,
and Abhishek Anand were all always there. Finally, I thank my parents, my grandmother, and
my brother, without whom I would not even have begun work on this thesis. For them, no
words of gratitude will ever be enough.

Mukund Raghothaman
March 8, 2017

ii



ABSTRACT

REGULAR PROGRAMMING OVER DATA STREAMS

Mukund Raghothaman

Rajeev Alur

Data streams arise in a variety of applications, such as feeds from financial markets,

event streams from sensors and medical devices, logs produced by long-running programs,

click-streams from websites, and packet sequences passing through internet routers. In this

thesis, we are concerned with computing quantitative statistics over these streams, and with

expressing transformations in the related domain of strings. Many string transformations are

instances of simple patterns, such as inserting, deleting and replacing substrings, or applying

a function to each element in the stream. Over data streams, the task is usually to compute

some simple quantitative statistic, such as counting the number of occurrences of a pattern

or the mean time between occurrences of an event.

There has traditionally been limited programming language support for stream processing,

and programmers are forced to write low-level code, by manually maintaining state and

updating it on seeing each new input element. This sacrifices both ease of expression and

amenability to static analysis. We propose a simple, expressive programming model for

stream transformations, with strong theoretical foundations and fast evaluation algorithms.

We present two concrete systems: DReX, to express string-to-string transformations, and

quantitative regular expressions (QREs) for numerical queries. Both formalisms start with

a set of basic functions and a small collection of hierarchically composable combinators,

analogous to the operations of regular expressions. The operators are simple to describe,

and can be used to combine small, easy-to-understand expressions into more complicated

expressions.

iii



iv

The functions expressible using DReX and QREs coincide with the class of regular string

transformations, which is a robust class with multiple characterizations and appealing closure

properties (under composition, input reversal, and regular look-ahead). We present a single-

pass linear-time evaluation algorithm for function expressions, and study efficient approximate

representations of numerical terms, so that some numerical QREs can also be evaluated with

sub-linear memory requirements.



This thesis is based on material drawn from the following publications:

1. Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for
string transformations. In Proceedings of the Joint Meeting of the 23rd EACSL Annual
Conference on Computer Science Logic and the 29th Annual ACM/IEEE Symposium on
Logic in Computer Science, CSL-LICS 2014, pages 9:1–9:10. ACM, 2014.

2. Rajeev Alur, Loris D’Antoni, and Mukund Raghothaman. DReX: A declarative language
for efficiently evaluating regular string transformations. In Proceedings of the 42nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
pages 125–137. ACM, 2015.

3. Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for
quantitative properties of data streams. In Peter Thiemann, editor, Programming
Languages and Systems: Proceedings of the 25th European Symposium on Programming,
ESOP 2016, pages 15–40. Springer, 2016.

4. Rajeev Alur, Sanjeev Khanna, Zachary Ives, Konstantinos Mamouras, and Mukund
Raghothaman. StreamQRE: Modular specification and efficient evaluation of quantita-
tive queries over streaming data. In submission, 2016.

v



Contents

1 Introduction 1
1.1 QREs, More Generally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Syntax and Semantics 18
2.1 DReX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Towards More General Cost Domains . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Quantitative Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.6 Streaming Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

I Expressiveness 44

3 Regular Cost Functions 45
3.1 Streaming String Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Streaming String-to-Term Transducers . . . . . . . . . . . . . . . . . . . . . . 49

4 Converting Function Expressions into Transducers 56
4.1 From DReX to SSTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 From QREs to SSTTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Converting Transducers into Function Expressions 66
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 A Theory of Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 Operations on Expression Vectors . . . . . . . . . . . . . . . . . . . . . . . . 72
5.4 The Base Case: Rp0qS pq,q

1q . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Motivating the Inductive Step: Rpi`1q

S pq,q 1q . . . . . . . . . . . . . . . . . . . 75
5.6 Ordering the Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7 A Preorder over Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.8 Decomposing Loops: The S-Decomposition . . . . . . . . . . . . . . . . . . . 79

vi



CONTENTS vii

5.9 Constructing B`S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.10Completing the Proof: Constructing Rpi`1q

S pq,q 1q . . . . . . . . . . . . . . . . 86
5.11The Case of SSTTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.12Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

II Evaluation Algorithms 91

6 A Fast Evaluation Algorithm for Consistent Expressions 92
6.1 Formal Statement of Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 The Formal Specification of a Function Evaluator . . . . . . . . . . . . . . . . 100
6.4 Inductive Evaluator Construction . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5 On Streaming Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Quantitative Approximate Terms 111
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Fixing the Space of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Experiments and Case Studies 120
8.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2 String Processing with DReX . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
8.3 QREs and Query Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4 Anecdotal Account of User Experience . . . . . . . . . . . . . . . . . . . . . . 127

9 Related Work 129
9.1 Parsing Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 Transducer Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.3 Streaming Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.4 Streaming Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10 Conclusion 138
10.1Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of Tables

2.1 Consistency rules for QREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Defining Parampeq and single-use expressions. . . . . . . . . . . . . . . . . . 38

8.1 Evaluated DReX expressions and consistency-checking time. . . . . . . . . . . 121
8.2 QRE evaluation performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
8.3 Comparing QRE evaluation performance with a handcrafted implementation. 127

viii



List of Figures

1.1 Hypothetical EEG event stream from a patient. . . . . . . . . . . . . . . . . . 2
1.2 The semantics of iterpe, opq. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The semantics of foldpc, e, opq. . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 The semantics of foldpc, e, opq. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 The operation of e0s on progressively longer prefixes of w. . . . . . . . . . . 9

2.1 The semantics of chainpe, rq. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 The syntax of DReX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Defining shufflepwq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Expressing shuffle using function combinators. . . . . . . . . . . . . . . . . . 23
2.5 Unambiguous concatenability. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Defining oppe1, e2, . . . , ekq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 Defining splitpeÑp fq and splitpeÐq fq. . . . . . . . . . . . . . . . . . . . . 33
2.8 Semantics of the iter combinator. . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.9 The syntax of QREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10The semantics of QREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.11Typing rules for QREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.12Visualizing the streaming composition operation, e" f. . . . . . . . . . . . . 42

3.1 Example SST,M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Another example SST,M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Example transition in an SSTT. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Example SSTTsM3,M4, andM5. . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Constructing unambiguous SSTs from DReX expressions. . . . . . . . . . . . 59
4.3 Unambiguous SSTT for e “ iterpe1 Ñ p1, e2 Ñ p2q. . . . . . . . . . . . . . . 65

5.2 Example runs of the SSTM2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Visualizing shapes as bipartite graphs. . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Modifying an SST to mandate a register order. . . . . . . . . . . . . . . . . . 76
5.5 Decomposing paths in rpiqpqi`1,qi`1q

` whose shape is S. . . . . . . . . . . . 80
5.6 Analyzing data flows while iterating k-segments. . . . . . . . . . . . . . . . . 82
5.7 Summarizing the extremal patches. . . . . . . . . . . . . . . . . . . . . . . . 84
5.8 Summarizing paths through SSTTs. . . . . . . . . . . . . . . . . . . . . . . . 87

ix



LIST OF FIGURES x

6.1 Ar1¨r2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Visualizing incomplete parse trees. . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Constructing parse trees with Ar1¨r2 . . . . . . . . . . . . . . . . . . . . . . . . 96
6.4 Example run of the evaluator for splitpeÑp fq over a stream w. . . . . . . . . 97
6.5 Dropping co-located tokens while pattern matching. . . . . . . . . . . . . . . 99
6.6 Collision-free evaluator inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 The index problem from communication complexity. . . . . . . . . . . . . . . 118
7.2 Reducing the index problem to QRE evaluation. . . . . . . . . . . . . . . . . . 118

8.1 Performance of the streaming DReX evaluation algorithm. . . . . . . . . . . . 122
8.2 Performance of the baseline DReX evaluation algorithm. . . . . . . . . . . . . 123
8.3 QRE evaluation performance on bank transaction data. . . . . . . . . . . . . 126



List of Algorithms

6.1 MsplitpeÑpfq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Moppe,fq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 MϕÞÑλ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Mε ÞÑt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.5 Mbot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Meelsef. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.7 Miterpe1Ñp1,e2Ñp2q. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.8 Mchainpe,rq. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.1 simplptrq: Arithmetic term simplification. . . . . . . . . . . . . . . . . . . . . 115
7.2 simplptsq: Multiset compression. . . . . . . . . . . . . . . . . . . . . . . . . 116

xi



Chapter 1

Introduction

Programmers routinely encounter sequential data, traditionally as strings, and more recently
as streams, arising in applications such as financial markets, click-streams fromwebsites, event
logs produced by programs, and measurements made by sensors and medical devices. When
dealing with strings, the programmer typically wishes to perform some simple operation,
such as extract, reorder, or delete substrings according to some regular pattern. Over data
streams, the task is usually to compute some simple quantitative statistic, such as counting
the number of occurrences of a pattern or the mean time between occurrences of an event.

In this thesis, we will introduce high-level abstractions to program queries over data
streams. There has been limited language support for these functions: traditional regular
expressions do not produce non-boolean outputs, database query languages such as SQL
focus on the relational abstraction rather than on the sequential nature of the data, and
contemporary stream processing systems consider the orthogonal problem of connecting a
topology of individual stream processors, where each stream processor is itself written in
low-level code and contains explicit instructions on how to update its state on seeing each
new element, i.e. the problem of composing individual stream transformations, each written
a low-level language of the programmer’s choice.

Writing low-level stateful code is a cumbersome task, and it is difficult to provide program-
mer assistance for debugging, static analysis, or automatic parallelization. The benefits of
high-level abstractions are well-established, for e.g., by successful domain-specific languages
such as SQL and regular expressions. In our system, the programmer writes a succinct de-
scription of the stream transformation or quantitative query in which they are interested, and
we automatically generate efficient query evaluators. The formalism based on the concept of
function combinators—constructs which combine functions into larger and more complicated
functions. There is a small collection of these core combinators, and each combinator has
a simple, intuitive description. Queries written in this style have the advantage of being
modular and easy-to-understand, and emphasize what needs to be computed over operational
details describing how the function needs to be computed.

In this thesis, we will address both the logical foundations—what class of queries can we
express in our system—and the algorithmic foundations—by showing that queries can be
evaluated with low time- and space-complexity.

1



CHAPTER 1. INTRODUCTION 2

B M E D ¨ ¨ ¨ B M M E B M M M E D B M M E B M E D

avg

max

avg avg

max

avg avg

max

Output

Figure 1.1: Hypothetical EEG event stream from a patient. There are four types of events:
(a) B indicates the beginning of an episode, (b)Mpt, vq indicates the measurement of the
value v at time t, (c) E indicates the end of the episode, and (d) D indicates the end of a
calendar day. We indicate each episode by drawing a box around its events. The doctor
wishes to compute the maximum of the per-episode average measurements for the last day.

Example 1.1. Consider the example of a patient being monitored in a hospital for a condition
such as epilepsy. The hypothetical data stream consists of four types of events: (a)B, indicating
the beginning of an episode, (b) EEG sensor readingsMpt, vq, indicating the timestamp t and
value v observed, (c) E, indicating the end of an episode, and (d) D, indicating the end of a
calendar day. The doctor wishes to know if the patient had a severe episode on the last day:
because individual measurements during an episode may widely vary, they measure severity
by the average measurement during an episode. The query is to find the maximum over all
episodes of the last day, of the average measurement during the episode. See figure 1.1.

For simplicity, let us say that the event stream has the form ppB ¨M` ¨ Eq` ¨Dq`. Given a
sequence of measurements w PM`, the expression:

e1 “ iter`pMpt, vq ÞÑ v, avgq

extracts the value from each measurement event, and computes the average of these values
over the entire sequence. The measurements of a single episode are flanked on the left and
on the right by begin- and end-markers, B and E respectively. The expression:

e2 “ splitpB, e1,E,π2q

maps event streams of the form B ¨ M` ¨ E to the output of e1 on the sub-sequence of
measurements. The input stream w is broken into three parts, w “ w1w2w3, where w1
is of the form B, w2 is fed as input to e1, and w3 is of the form E. The results from the
sub-expressions are combined using the usual second projection operator, π2pa,b, cq “ b.
The third expression:

e3 “ splitpiter`pe2,maxq,D,π1q

maps the events of a single day, w P JpB ¨M` ¨ Eq` ¨DK to the severity of the most intense
episode. Recall that the doctor was interested in this measurement for the last day:

e4 “ splitpppB ¨M` ¨ Eq` ¨Dq˚, e3,π2q. 4



CHAPTER 1. INTRODUCTION 3

The expressions we have written are inspired by the common notation of regular expres-
sions. Just as with regular expressions, the operations, splitpe, f, opq, iterpe, opq, etc. do not
specify the mechanics of parsing the input stream, but rather only specify how to recognize
a viable decomposition: “Split the input stream w into two parts w “ w1w2 such that both
v1 “ JeKpw1q and v2 “ JfKpw2q are defined. Output oppv1, v2q.”

We will consider three concrete questions in this thesis: (a) How do we define program-
ming abstractions so that we can write expressions similar to those we have just written?
(b) What class of queries can we express using this notation? And (c) what is the time
and space complexity of evaluating queries expressed in this notation? By using high-level
combinators such as split, iteration (iter), or global choice (e else f), our hope is that we
free the programmer from the burden of explicitly reasoning about state and case analyses
based on potentially unseen events. Notably, the only structure we assume inherent in the
input data is that it is sequential. The evaluation tree, such as that shown in figure 1.1, is an
artifact of the query rather than of the data: different queries can potentially impose different
structure on the same input stream.

Example 1.2. Let us consider an example from text processing. Given an email address such
as “user@domain”, we wish to extract the domain name, “domain”. We can write function
expressions in a similar manner as we did for the EEG data stream:

e1 “ iterpx ‰ @ ÞÑ εq

uniformly maps input streams of the form p @q˚ to the empty output string ε. We are
expressing functions JeK : Σ˚ Ñ Γ˚: the only way to combine the outputs in this case is by
string concatenation, and the concatenation operator, “¨”, is implicit: iterpeq is shorthand for
iterpe, ¨q.

The second expression,

e2 “ iterpx ‰ @ ÞÑ xq,

is also only defined for strings of the form p @q˚, but simply echoes such strings unchanged.
We wished to extract the domain name from the email address: this is accomplished by the
expression,

e3 “ splitpe1, @ ÞÑ ε, e2q. 4

Function combinators. We will present two formalisms: DReX, to express string-to-string
transformations, and quantitative regular expressions (QREs), for numerical functions over
data streams. In both formalisms, we start with a small collection of basic functions of the form
ϕ ÞÑ λ, where ϕ : ΣÑ Bool is a single-element predicate, and λ : ΣÑ D is a single-element
transformation: if the input stream w consists of a single element, and ϕpwq “ true, then
output λpwq.

We then hierarchically combine function expressions using combinators which are very
similar to those from regular expressions: e else f is the analogue of union, splitpe, f, opq is



CHAPTER 1. INTRODUCTION 4

the analogue of concatenation, and iterpe, opq is the analogue of Kleene-*. We also include
the operation combine:

Jcombinepe, fqKpwq “ JeKpwq ¨ JfKpwq,

or in the world of numerical quantities, oppe, fq, for some numerical operator op : RˆRÑ R:

Joppe, fqKpwq “ oppJeKpwq, JfKpwqq.

This combinator is the counterpart of the intersection operator in regular expressions. Our
ultimate motivation is to obtain a formalism which is easy to understand, efficiently parseable
and expressively powerful.

Example 1.3. There are several situations where combine and op are useful constructs.
Consider the function copy : Σ˚ Ñ Σ˚, defined as copypwq “ ww. The identity function can
be expressed as id “ iterptrue ÞÑ xq, and so we write

copy “ combinepid, idq.

In the case of the patient data stream, we might be interested in mapping episodes w PM`

to their inter-quartile range. We would then be interested in the QRE:

iqr “ s0.75 ´ s0.25, where
s0.75 “ iter`pMpt, vq ÞÑ v, select0.75q, and
s0.25 “ iter`pMpt, vq ÞÑ v, select0.25q.

Here, the function selectk : MSetpRq Ñ R maps a multiset A to the k|A|-th smallest element
of A. Observe that in the expression iqr, both operands of the “´”, s0.75 and s0.25, are
themselves QREs rather than concrete real numbers. JiqrKpwq “ Js0.75Kpwq ´ Js0.25Kpwq. 4

1.1 QREs, More Generally

Historically, we developed QREs after introducing DReX and proving most of the results of
this thesis for the case of string-to-string transformations. Our motivation in developing
QREs was to obtain similar a similar abstraction for numerical functions as DReX is for
string-valued functions. Output domains such as the set of real numbers provide the most
important applications, justifying the qualifier “quantitative” in the phrase “quantitative
regular expressions”. Primarily, however, QREs are a significant generalization of DReX,
where both the output domain and associated cost operations, such as the choice of “op”,
are arbitrary and chosen by the programmer when constructing the expression. (We will
formally state this connection between QREs and DReX in theorem 2.24.)

In general, we assume almost no properties of the output type (except that it is non-empty,
for some constructions where we would like variables to be arbitrarily initialized), or of
operators op : T1 ˆ T2 ˆ ¨ ¨ ¨ ˆ Tk Ñ T (except that they be computable). They need not
possess identity elements, or satisfy any interesting algebraic property, such as associativity or



CHAPTER 1. INTRODUCTION 5

w1 w2 w3 wn

JeK JeK JeK ¨ ¨ ¨ JeK¨ ¨ ¨

opv1

v2 v3

vn

Figure 1.2: The semantics of iterpe, opq. The input stream is divided into pieces, w “

w1w2 ¨ ¨ ¨wn, such that vi “ JeKpwiq is defined for each i. Given an associative operator
op : T ˆ T Ñ T with an identity element c, Jiterpe, opqKpwq “ oppv1, v2, . . . , vnq.

commutativity. This reluctance to assume additional properties is also practically motivated:
operators such as median : MSetpRq Ñ R take a single argument as input, operators such as
subtraction, ´ : Rˆ RÑ R are not associative, and even the implicit concatenation operator
of DReX, ¨ : Σ˚ ˆ Σ˚ Ñ Σ˚ is non-commutative.

We therefore have to review some implicit assumptions in combinators such as split
and iter. Consider the definition of JiterpeqKpwq. The input string w is divided into patches
w “ w1w2 ¨ ¨ ¨wn, such that vi “ JeKpwiq is defined for each i. These values are then
combined to produce the result, JiterpeqKpwq “ v1 ¨ v2 ¨ ¨ ¨ vn. See figure 1.2.

foldpc, e,opq. In particular, when writing iterpe, opq, we assume that op is associative and
admits an identity element ε, so that binary concatenation ¨ : Γ˚ ˆ Γ˚ Ñ Γ˚ can be freely
extended to arbitrary arities, ¨ : Γ˚ ˆ Γ˚ ˆ ¨ ¨ ¨ ˆ Γ˚ Ñ Γ˚. A combinator inspired by the
“fold” operation from functional programming is somewhat more general than iterpeq: Let
e : Σ˚ ù Te be a QRE which maps streams w P Σ˚ to values JeKpwq : Te, c : T be an initial
value, and op : TˆTe Ñ T be an operation over the cost domains. Then foldpc, e, opq is a QRE
whose semantics are defined as follows. Given an input stream w, it is divided into chunks,
w “ w1w2 ¨ ¨ ¨wn, such that vi “ JeKpwiq is defined for each i. Then, each i P t0, 1, 2, . . . ,nu,
define ai as follows:

a0 “ c,
a1 “ oppa0, v1q,
a2 “ oppa1, v2q,
¨ ¨ ¨

an “ oppan´1, vnq.

Then, Jfoldpc, e, opqKpwq “ an. See figure 1.3.



CHAPTER 1. INTRODUCTION 6

w1 w2 w3 wn

JeK JeK JeK ¨ ¨ ¨ JeK¨ ¨ ¨

op op op ¨ ¨ ¨ op¨ ¨ ¨c Output

Figure 1.3: The semantics of foldpc, e, opq. The input stream is divided into pieces, w “

w1w2 ¨ ¨ ¨wn, such that vi “ JeKpwiq is defined for each i. Starting with the initial value c,
the results of subsequent applications of e are “threaded through” using the operator op.

Values vs. terms. A large variety of functions can be expressed using the fold combinator,
and it relaxes the assumption that op be associative, but still assumes that op is binary, and
requires a “neutral” element c. To work around this, the key idea behind QREs is to make
expressions output terms, rather than concrete values. Consider, for example, the expressions

e1 “ a
n ÞÑ n, and

e2 “ a
n ÞÑ minpp,nq.

Pick the input stream w “ a534. The first expression e1 simply returns the length of the
stream, Je1Kpwq “ 534. On the other hand, the second expression e2 returns the syntactic
object “minpp, 534q”, where p is an integer-valued parameter. Parameters can be thought of
as holes in the evaluation tree, to be filled in later either by the programmer, or some other
QRE. For example, if we define

e3 “ a
n ÞÑ 5, and

e4 “ e2tp :“ e3u,

then the expression e4 evaluates both e2 and e3 on the entire input stream w, and substitutes
the value of e3 into the parameter p in the value returned by e2. On our input stream of
choice, w “ a534, we have:

Je3Kpwq “ 5, so that

Je4Kpwq “ Je2Kpwqrp :“ Je3Kpwqs
“ pminpp, 534qqrp :“ 5s
“ minp5, 534q
“ 5.



CHAPTER 1. INTRODUCTION 7

w1 w2 w3 wn

JeK JeK JeK ¨ ¨ ¨ JeK¨ ¨ ¨p Output
p p p p

Figure 1.4: The semantics of foldpc, e, opq. The input stream is divided into pieces, w “

w1w2 ¨ ¨ ¨wn, such that vi “ JeKpwiq is defined for each i. Starting with the initial value c,
the results of subsequent applications of e are “threaded through” using the operator op.

iterpe Ñ pq and splitpe Ñp fq. Once we accept that QREs return representations of
syntactic objects called terms, it is relatively straightforward to to devise domain- and
operator-agnostic versions of the split and iter combinators. Let e : Σ˚ ù T be a QRE1

which maps input streams w P Σ˚ to output terms, JeKpwq, of type T . Then, the expression
iterpeÑ pq also transforms input streams w P Σ˚ into output terms JiterpeÑ pqKpwq of type
T .

The semantics of iterpeÑ pq are somewhat similar to fold. The main idea is that inter-
mediate results are accumulated using term substitution rather than by applying any specific
operator op. Concretely, the input stream w is first divided into patches w “ w1w2 ¨ ¨ ¨wn,
such that ti “ JeKpwiq is defined for each i. We then iteratively define the following sequence
of terms:

ta,0 “ p,
ta,1 “ t1rp :“ ta,0s,
ta,2 “ t2rp :“ ta,1s,

¨ ¨ ¨

ta,n “ tnrp :“ ta,n´1s.

Finally, we define Jiterpe Ñ pqKpwq “ ta,n. See figure 1.4. Both simpler versions of iter,
iterpe, opq, and foldpc, e, opq can be desugared into this more general combinator (we will
show the explicit desugaring in chapter 2 in examples 2.19 and 2.20).

Similarly, the more general version of the concatenation operator is of the form splitpeÑp

fq. Here e : Σ˚ ù Te, and f : Σ˚ ù Tf produce terms of type Te and Tf respectively. The
parameter p is of type Te, and the intention is to substitute the result te produced by Te into
the parameter p of the term tf produced by Tf. Concretely, let w be the input stream, which
can be divided into two pieces, w “ wewf such that te “ JeKpweq and tf “ JfKpwfq are both

1We intentionally choose a notation e : Σ˚ ù T for QREs similar to that used to describe functions,
f : T Ñ T 1. However, we pick a different arrow, ù, because (a) the object actually doing the transformation is
JeK, (b) for QREs, the objects produced are actually of type TermspTq, and (c) (at least early on,) in chapter 2,
JeK : Σ˚ ˆ TermspTq will actually be a relation rather than a function.



CHAPTER 1. INTRODUCTION 8

e, f, . . . ::“ ϕ ÞÑ λ | ε ÞÑ t | bot Basic expressions
| e else f Regular combinators
| splitpeÑp fq | splitpeÐq fq
| iterpe1 Ñ p1, e2 Ñ p2, . . . , ek Ñ pkq

| iterpp1 Ð e1,p2 Ð e2, . . . ,pk Ð ekq

| oppe1, e2, . . . , ekq Cost operations
| etp :“ fu Substitution

Figure 2.9: The syntax of QREs. (Repeated from page 34.)

defined. Then

JsplitpeÑp fqKpwq “ tfrp :“ tes.

As before, the simpler instances of the split combinator, splitpe, f, opq can be desugared to
use this more general combinator, as we will see in example 2.18.

See figure 2.9 for the final definition of QREs. As a result of generalizing QREs to output
terms rather than concrete values, the combinators split into two separate classes: the parsing
combinators such as split, iter and else, and the cost combinators such as oppe, fq and erp :“ fs.
The remaining operators such as splitpe, f, opq, iterpe, opq, and foldpe,a0, opq are just special
instances of our more general split- and iteration-combinators, as we will show in chapter 2.
We therefore have a framework which is completely agnostic of instance-specific details such
as the cost domain, and the number and arity of individual cost operations.

Streaming composition. Say that the medical sensor occasionally produces out-of-scale
readings due to physical limitations, and the manufacturer recommends that all measurements
which are numerically greater than 100 be discarded. Rather than rewrite all our previous
queries, it is simpler to construct a “predicate QRE” e0:

e0 “ ϕpxq ÞÑ x, where
ϕpxq “ px “ Bq _ px “ Eq _ px “Mpt, vq ^ v ď 100q.

Next, the expression

e0s “ splitpΣ˚, e0,π2q

maps a non-empty stream w “ w 1a of stream elements to its final value a iff a satisfies the
property being tested, and is otherwise undefined.

Consider a stream of elements w, as shown in figure 1.6. When e0s is applied to progres-
sively longer prefixes of w, the sequence of values produced corresponds to exactly those
elements which satisfy ϕ. The QRE e0s therefore behaves like a filter for ϕ.



CHAPTER 1. INTRODUCTION 9

 ϕpw1q ϕpw2q ϕpw3q  ϕpw4q ϕpw5q

ε ε w2 w3 ε w5

Je0sKpεq

Je
0
s Kpw

1
q

Je
0
s Kpw

1 w
2
q

Je
0
s Kpw

1 w
2 w

3
q

Je
0
s Kpw

1
¨
¨
¨w

4
q

Je
0
s Kpw

1
¨
¨
¨w

5
q

Figure 1.6: The operation of e0s on progressively longer prefixes of w. The expression e0s
emits the last element of w “ w 1a iff a satisfies ϕ. The sequence of outputs, Je0sKpεq ¨
Je0sKpw1q ¨ Je0sKpw1w2q ¨ ¨ ¨ Je0sKpw1w2 ¨ ¨ ¨wnq, with ε replacing every occurrence of the
undefined element K, consists of only those elements of w which satisfy ϕ.

w:

Me

Mf

i

Motion of
tape head

vi “ JeKpw1w2 ¨ ¨ ¨wiq

Figure 2.12: Visualizing the streaming composition operation, e" f. (Repeated from page
42.)



CHAPTER 1. INTRODUCTION 10

The streaming composition combinator, “"”, allows us to access this sequence of outputs.
Given expressions e and f, where f accepts a stream of elements each of which is of the return
type of e, e" f conceptually makes one left-to-right pass over the input stream w, examining
each prefix of w in increasing order of length. Whenever e is defined, the result is fed to the
second sub-expression f. See figure 2.12.

Recall that our goal was to ignore out-of-scale readings emitted by the medical sensor,
and we wrote the QRE e0s to do the filtering. If e is the actual query of interest, then this is
achieved the expression e 1 “ e0s " e.

While it is not part of the basic QRE calculus of figure 2.9, we have found streaming
composition to be an extremely useful operation in some of our later work [20]. Unlike
the remaining operators, there is more wide-spread support for this construct outside the
text-parsing ecosystem. Long processing pipelines are a natural programming abstraction, it
is the primary building block in stream-processing systems such as Apache Storm [1], and
also finds application in synchronous programming languages.

1.2 Contributions

In this thesis, we propose DReX expressions and QREs as a practical and theoretically
well-understood framework to express functions over data streams. We are easily able
to express several non-trivial queries, there is a fast one-pass evaluation algorithm for
consistent function expressions, and for many numerical queries, we can maintain inter-
mediate results as approximate terms to control memory requirements. QREs and DReX
expressions are expressively equivalent to regular cost functions and regular string trans-
formations respectively. Both classes have several equivalent representations, appealing
closure properties, and traditional static analysis problems such as precondition computation
and equivalence-checking are decidable for regular string transformations. We are not aware
of a prior characterization of these classes of functions by a set of combinators analogous to
the characterization of regular languages by regular expressions.

Both DReX and QREs are built around a small core: queries are modular, and the com-
binators are simple to explain. This makes programming in these formalisms simple, and
raises the possibility of new and improved forms of programmer support. This includes better
static analysis and debugging tools, and potential for automatic parallelization and query
optimization. In comparison, most previous string-manipulating programs do not have a
small core calculus, making this kind of programmer assistance difficult or even impossible
to provide.

We can broadly divide our technical contributions into two parts, those related to expres-
siveness, and those related to evaluation algorithms. We will now motivate and describe our
results in each of these directions.

1.2.1 Expressiveness

Regular string transformations. What is the class of functions expressible as QREs and as
DReX expressions? Given that our formalisms are inspired by regular expressions, we look



CHAPTER 1. INTRODUCTION 11

at similar results from regular language theory. The study of regular languages has been
one of the most prominent successes in computer science: Traditional regular expressions
are easy-to-understand, can be efficiently parsed, and are powerful enough for a variety
of simple text-processing tasks. Regular languages have robust closure properties, and
most analysis questions such as equivalence and language inclusion are decidable. They
have multiple equivalent representations, including: (a) operational models such as finite
automata, (b) descriptive characterizations such as regular expressions, and (c) as formulas
in monadic second-order (MSO) logic.

Therefore, a natural starting point for our expressiveness results is the class of “finite
automata extended with outputs”, i.e. the class of finite-state transducers. It can be readily
seen that unlike in the simpler setting of acceptors, two-way finite-state transducers are
strictly more powerful than their one-way counterparts (the function w ÞÑ reversepwq is
a simple function in this gap). While the post-image of a regular language under such a
transformation need not be regular [6], they are closed under composition [37] and the
equivalence of deterministic two-way finite state transducers is decidable [64].

Courcelle extended the idea of MSO-definable acceptors to transformations defined by
logical formulas in MSO [38]. Engelfriet and Hoogeboom later showed that the class of
transformations expressible as deterministic two-way finite state transducers coincides with
functions definable in MSO [51], and labelled this the class of regular string transformations.

Streaming string transducers (SSTs). So far, we have described two equivalent char-
acterizations of regular string transformations, first as the operational model of two-way
deterministic finite-state transducers, and second, as transformations defined by logical formu-
las in MSO. In a sequence of papers [9, 10], Alur and Černý introduced the equivalent one-way
operational model of streaming string transducers (SSTs), and this is the characterization
which we will use in this thesis.

An SST is a finite-state machine which reads the input string w in one left-to-right pass,
but maintains multiple registers to store partially computed chunks of the output which are
updated and combined to produce the final result. See figure 3.2.

The expressive power of DReX. Having defined regular string transformations as those
which can be implemented by SSTs, our goal in part I of this thesis is the following pair of
theorems, which establish that SSTs and DReX expressions are expressively equivalent:

Theorem 4.1 (Closure). If Σ is a finite input alphabet, then:

1. If e is a consistent DReX expression, then we can construct an SSTM which computes JeK.

2. If e is a consistent QRE, then we can construct an SSTTM which computes JeK.

Theorem 5.1 (Completeness). 1. For every SSTM, we can construct an equivalent consis-
tent DReX expression e.

2. For every SSTTM, we can construct an equivalent consistent, well-typed, and single-use
QRE e.



CHAPTER 1. INTRODUCTION 12

q1start q2
q3

x

a
L

z :“ z ¨ b

b

O x :“ x ¨ y
y :“ z
z :“ ε

a

N

x :“ x ¨ a
z :“ z ¨ b

b

O x :“ x ¨ y
y :“ z
z :“ ε

a

N

x :“ x ¨ a
z :“ z ¨ b

b

O x :“ x ¨ y
y :“ z
z :“ ε

Figure 3.2: An example of a streaming string transducer (SST). We name this machine
M2. The details of the function being computed are presently unimportant. Observe that
the machine has a finite set of control states, Q “ tq1,q2,q3u, and a finite set of registers
V “ tx,y, zu. Each register holds an intermediate result, and registers are combined and
updated during transitions. The state q3 is the only accepting state, and when the machine
finishes execution in this state, the value of register x is emitted as output. We will formally
define SSTs in chapter 3. (Repeated from page 47.)

am2shufflepwq : bm1 am3 bm2

am1w: b am2 b am3 b ¨ ¨ ¨ amk´1 b amk b

¨ ¨ ¨ amk bmk´1

Figure 2.3: Defining shufflepwq. (Repeated from page 23.)

The closure theorem, which converts DReX expressions into equivalent SSTs is relatively
straightforward, and mostly follows the traditional regular-expression-to-NFA translation
algorithm. The completeness theorem is the more challenging claim to prove.

So far, we have described four operators in the DReX calculus: else, split, iter, and combine.
We conjecture that the function “shuffle” defined as follows:

shufflepam1bam2b ¨ ¨ ¨amkbq “ am2bm1am3bm2 ¨ ¨ ¨amkbmk´1

is inexpressible using only these four combinators. See figure 2.3. The rough intuition is that
each of these operators first divides the input into disjoint patches, and then maps each of
these patches into disjoint substrings of the output, in the same order as in the input. The
function shuffle does not have this property, and is therefore unlikely to be expressible using
these operators alone.

On the other hand, shuffle is implementable by an SST: in fact, this is the function
implemented by the machineM2 we saw in figure 3.2. One important technical insight in



CHAPTER 1. INTRODUCTION 13

this thesis is in the identification of an additional operator “chain” which allows the proof of
theorem 5.1 to go through.

chainpe, rq. We will now briefly describe the chained sum combinator, chain. Let e be a
DReX expression, and r be a regular expression. Then chainpe, rq is a DReX expression, and
it operates as follows. Given an input string w, the chained sum expression first divides it
into patches, w “ w1w2 ¨ ¨ ¨wn, where each patch wi P Σ˚ matches the regular expression r.
The expression chainpe, rq then applies the sub-expression e to each pair of adjacent patches
wiwi`1 and glues the results together to obtain the result:

Jchainpe, rqK “ JeKpw1w2qJeKpw2w3q ¨ ¨ ¨ JeKpwn´1wnq

In the case of shuffle, r “ a˚b, and emaps strings of the form am1bam2b to am2bm1 . See
figure 2.3. We will formally define chain in chapter 2. The motivation behind the combinator
is two-fold: first, we believe that shuffle is inexpressible using the remaining combinators,
and second, the operation emerges naturally as an idiom during the proof of theorem 5.1.
The final construction of a DReX expression from an SST in chapter 5 will involve a detailed
analysis of the pattern of data flows between the registers of the given SST.

A theory of regularity for numerical functions. To prove properties about the expressive
power of QREs, we would like a model of functions from streams to numerical quantities
which naturally generalizes the previous notion of regular string transformations. Weighted
automata [49] are the best known of the various automaton models which map streams to
numerical values.

Unfortunately, weighted automata are limited to two operations which form a semiring.
This is insufficient for our purposes, because we would like to express a richer class of
functions, simultaneously involving multiple arithmetic operations such as `, min and max,
and multiset operations such as avg and median.

We therefore use the more recent concept of regular cost functions [13]. This model is
parameterized by the set of operations Ops: there can be any number of operations, and
each operation op P Ops can be of arbitrary arity. Regular cost functions coincide with MSO-
definable string-to-term transformations, and are also captured by the one-pass operational
model of streaming string-to-term transducers (SSTTs). SSTTs are very similar to SSTs: they
have a finite set of control states Q, and a finite set of registers V to hold intermediate results
of computation, except that the registers now hold terms rather than concrete values. We
will define SSTTs in chapter 3, and just as the case of SSTs for regular string transformations,
SSTTs will be our characterization of choice for regular cost functions. Paralleling the claim
that DReX and SSTs are equi-expressive, in chapter 5, we will show that QREs and SSTTs
can express the same class of functions.

1.2.2 The Expression Evaluation Problem

The most important computational problem associated with QREs and DReX expressions is
that of evaluation: given an expression e and an input stream w, compute JeKpwq.



CHAPTER 1. INTRODUCTION 14

A straightforward approach is to “operationalize” the semantics, by using dynamic pro-
gramming and evaluating each sub-expression of e on each sub-stream of w. Unfortunately,
this algorithm requires Op|w|3q time, and does not scale to streams longer than a few thousand
elements. Ideally, we would like an evaluation algorithm which makes a single left-to-right
pass over the input stream, and processes each symbol of w in polyp|e|q time.

Because of the analogy between DReX expressions (split, else, iter, etc.) and regular
expressions (concatenation, union, Kleene-*, etc.), another approach is to construct an
transducer for evaluation similar to the automaton built to match strings against regular
expressions. Unfortunately, in this approach, the expression combinepe, fq involves the product
construction, and repeated invocations of the product construction results in a transducer
whose size is exponential in the expression size |e|.

Bounding the memory usage. Consider a pair of states, qe P Qe and qf P Qf, of each
of the component machines when constructing the product. While the product machine
has significantly more states in total than each of the component machines, |Q| “ |Qe||Qf|,
each product state can itself be represented in a much smaller amount of space, |pqe,qfq| «
|qe| ` |qf|, where the notation |q| indicates the amount of space required to encode the
representation of a state. Therefore, instead of explicitly constructing this transducer with an
exponentially large state space, we build function “evaluators”, which are stateful machines
which lazily (and implicitly) traverse the states of the underlying transducer.

However, the underlying automaton is still a non-deterministic machine. To match a
string against an NFA in one-pass, we have to simultaneously maintain all eventualities, i.e.
the set

Qw “ tq P Q | q0 Ñ
w qu

of all states q which are reachable from the initial state q0 along some path labelled w. Each
element q P Qw corresponds to a different potential parse tree of the entire stringww 1, where
w 1 is the (still unseen) suffix. Memory usage, and hence processing time, is determined
by the size of Qw, where |Qw| ď |Q|. Therefore, even if we do not explicitly construct the
product machine for combinepe, fq, executing an implicit non-deterministic product machine
would require memory exponential in the expression size, | combinepe, fq|.

Expression consistency. Therefore, the main challenge is to find a subset of DReX and QREs
which does not sacrifice expressiveness, but still permits fast and memory efficient evaluation
algorithms, in particular by restricting the ability to express complicated anti-patterns, such
as with combine, which has the flavour of language intersection:

Jcombinepe, fqKpwq “ JeKpwq ¨ JfKpwq
w P Jr1 X r2K ðñ w P Jr1K^w P Jr2K

We call this restricted set the consistent fragment, obtained by imposing additional constraints
on the domains of the sub-expressions of each combinator. For example, for combinepe, fq
to be consistent, we require that Dompeq “ Dompfq. The domain of the entire expression,



CHAPTER 1. INTRODUCTION 15

Dompcombinepe, fqq is then equal to the domain of each sub-expression and the operator
cannot express language intersection. For splitpe, fq, we require that Dompeq and Dompfq
are unambiguously concatenable. In the case of the choice combinator, e else f, we require
Dompeq and Dompfq to be disjoint. Consistency is closely linked to the notion of unambiguous
regular expressions, and also ensures that QREs and DReX expressions produce at most a
single output string for each input, i.e. that the expression encodes a partial function rather
than an unrestricted relation.

Consistency can be checked in polyp|e||Σ|q time if the input stream is drawn from a finite
alphabet Σ. The consistency rules are simple to state and do not sacrifice expressive power.
Most natural QREs and DReX expressions are already consistent, indicating that all streams
must be unambiguously parsed, and do not pose a significant burden on the programmer.
Notably, the few times we wrote non-consistent expressions, the problem turned out to be a
mistake in the expression, rather than a limitation of the expressions we could write.

For the consistent fragment, we are able to provide a fast, memory-efficient one-pass
evaluation algorithm: given an expression e and an input stream w “ w1w2 ¨ ¨ ¨wn, each
symbolwi of the stream is processed in Op|e|2q time, and during this processing, the algorithm
produces the value of JeKpw1w2 ¨ ¨ ¨wiq.

Informally, each expression evaluator keeps track of potential parse trees of w as multiple
threads, and updates the threads on reading each input symbol. The key technical challenge
is to limit the number of threads to some function of the expression size, but independent of
the length of the input stream |w|. We exploit the consistency requirements to achieve this
by establishing a correspondence between the active threads of each evaluator and the states
of the underlying NFA.

Size of the output. The output of a DReX expression, JeKpwq may be comparable in size
to the input: consider for example the identity function, id “ iterptrue ÞÑ xq, or the string
reversal function, rev “ left-iterptrue ÞÑ xq. At the very least, the evaluator needs to keep
this output in memory, and its memory usage therefore depends on the size of the output. In
particular, we define the value

slpe,wq “ maxt|Je 1Kpw 1q| | e 1 sub-expression of e, and w 1 substring of wu, (1.2.1)

as a bound on the size of the largest intermediate result produced during evaluation. We will
similarly define a quantity stpe,wq for QRE evaluation. The main technical contributions of
chapter 6 are QRE / DReX evaluation algorithms which satisfy the following properties.

Theorem 6.1. 1. Let e be a consistent DReX expression, and w “ w1w2 ¨ ¨ ¨wn be a se-
quence of symbols. There is an algorithm which makes one pass over w, and processes
each symbol wi in Op|e|2q time. During this processing, it will also output the value of
JeKpw1w2 ¨ ¨ ¨wiq, if it is defined. While reading the first i symbols, the algorithm will
consume less than Op|e|slpe,w1w2 ¨ ¨ ¨wiqq memory.

2. Let e be a consistent, well-typed, single-use QRE, and w “ w1w2 ¨ ¨ ¨wn be a sequence
of input symbols. There is an algorithm which makes one pass over w, and processes



CHAPTER 1. INTRODUCTION 16

each symbol wi in Op|e|2q time. During this processing, it will also output the value of
JeKpw1w2 ¨ ¨ ¨wiq, if it is defined. While reading the first i symbols, the algorithm will
consume less than Op|e|stpe,w1w2 ¨ ¨ ¨wiqq memory.

Term compression and approximation algorithms. Observe that the QRE evaluation
algorithm in theorem 6.1 requires Op|e|stpe,wqq memory, where stpe,wq “ Op|e||w|q is the
size of the largest intermediate term produced while evaluating e on w. For some output
domains, such as strings, it is impossible to do significantly better than this bound.

However, when the expression only involves arithmetic operations, `, min, max, and avg,
we are able to “compress” intermediate terms so that stpe,wq ď polyp|e|q, independent of
the length of the stream w.

Another class of queries for which stpe,wq cannot be improved is when the expression
involves quantile queries, such as median, or selectk. Here, selectkpAq, for 0 ď k ď 1, is the
k|A|-th smallest element of A. It is a well-known lower bound that computing medianpAq or
selectkpAq in one pass over the elements of A requires |A| space, and similar lower bounds on
exact computation have motivated the study of approximation algorithms for data streams.

In the case of QREs, when the expression involves a bounded number of quantile queries,
and the programmer provides an error tolerance ε ą 0, we are able to reduce stpe,wq to
polypε´1|e| logp|w|qq. In this case, we guarantee that the result we produce, v, and the true
result v̂ are related as p1´ εqv̂ ď v ď p1` εqv̂. This result is particularly interesting because
it suggests that we can incorporate continuing developments from the streaming algorithms
literature, which is focused on finding time- and memory-efficient algorithms for specific
problems, into our framework, which addresses the orthogonal problem of conveniently
expressing a large class of simple queries.

Experimental performance. We implemented our evaluation and consistency-checking
algorithms and evaluated them on several text transformations: deletion of comments from a
program, insertion of quotes around words, tag extraction from XML documents, reversing
dictionaries, and the reordering and aligning of misplaced fields in BibTeX files. The evaluation
algorithm for consistent DReX scales to large inputs (less than for 8 seconds for 100,000
characters), while the dynamic programming algorithm, due to the cubic complexity in the
size of the input, does not scale in practice (more than 60 seconds for 5,000 characters) and
therefore has limited applicability. Finally, the consistency-checking algorithm is very fast in
practice (less than 0.6 seconds for programs of size « 3,600 sub-expressions), and it is also
very helpful in identifying sources of ambiguity in the implemented programs.

1.3 Thesis Outline

We begin by defining DReX and QREs in chapter 2. While this chapter is necessarily formal,
we will also include some pedagogical examples to improve readability.

Part I is devoted to our expressiveness claims. We define regular cost functions in chap-
ter 3. Our definitions are operational: regular string transformations are those that can be



CHAPTER 1. INTRODUCTION 17

implemented by an SST, and regular cost functions are those that can be implemented using
an SSTT. In chapter 4, we describe the translation from consistent function expressions to
transducer models, and in chapter 5, we describe the translation from transducer models to
function expressions.

Part II presents the fast evaluation algorithm for consistent QREs. The algorithm itself
is described in chapter 6. We consider issues related to term compression and approximate
query evaluation in chapter 7, and present an experimental evaluation of the framework in
chapter 8.

We conclude by summarizing the related work in chapter 9, and discuss potential areas
of future research in chapter 10.



Chapter 2

Syntax and Semantics

In this chapter, we will define the basic expressions and combinators that make up the
QRE / DReX framework. We will begin by defining DReX expressions in section 2.1, including
the important idea of expression consistency. In section 2.2, we will motivate the definition of
QREs by writing some representative expressions, and outline our primitive notions—types,
operations, and terms—in section 2.3. In section 2.4, we will define QREs: the development
of ideas will closely follow the pattern used for DReX, but will involve some additional
considerations beyond expression consistency, particularly well-typedness and single-usage.
In section 2.5, we will construct a few example QREs, and finally introduce the streaming
composition combinator in section 2.6.

2.1 DReX

DReX is a formalism to express mappings between input stringsw P Σ˚, and an output monoid
pD, ¨, 1Dq [19]. The most important instantiation is where D “ Γ˚, the set of strings over an
output alphabet Γ . In this case, DReX can be used to express string transformations [14],
similar to tools such as sed, AWK and Perl. Some simple numerical queries can also be
expressed using the monoid pR,`, 0q. In this section, we will formally define the syntax and
semantics of DReX expressions. Each expression e encodes a relation, JeK Ď Σ˚ ˆ D, and we
will write “e : Σ˚ ù D” to succinctly indicate the input and output domains.

Basic expressions. Pick a character a P Σ, and designate an output d P D. There are three
basic expression constructors: (a) a ÞÑ d, which maps the input string a to the constant
output d, (b) ε ÞÑ d, which maps the empty string ε to the output d, and (c) bot, which is
undefined everywhere.

Ja ÞÑ dK “ tpa,dqu, (2.1.1)

Jε ÞÑ dK “ tpε,dqu, and (2.1.2)

JbotK “ H. (2.1.3)

18



CHAPTER 2. SYNTAX AND SEMANTICS 19

Choice. For each pair of expressions e, f, the expression eelsef non-deterministically applies
either e or f. This is the straightforward analogue of the union operator in regular expressions.

Je else fK “ tpw,dq | pw,dq P JeK or pw,dq P JfKu
“ JeKY JfK. (2.1.4)

Concatenation. The expression splitpe, fq splits the input stream w into two parts, w “

wewf, and applies e to the first part, and f to the second.

Jsplitpe, fqK “ tpwewf,de ¨ dfq | pwe,deq P JeK, pwf,dfq P JfKu. (2.1.5)

The sister-expression left-splitpe, fq is similar, except for the order in which de and df are
combined:

Jleft-splitpe, fqK “ tpwewf,df ¨ deq | pwe,deq P JeK, pwf,dfq P JfKu. (2.1.6)

Clearly, split and left-split overlap for the special case of commutative monoids. In more
general cases, such as the the cost domain of strings under concatenation, the two expressions
are different.

Iteration. Given an input stream w, iterpeq breaks it up into pieces w “ w1w2 ¨ ¨ ¨wn such
that e is defined for each wi. The results d1, d2, . . . , dn are then glued back together to form
the output, d1 ¨ d2 ¨ ¨ ¨dn. Formally, JiterpeqK is the smallest set defined by the following rules:

1. pε, 1Dq P JiterpeqK, where 1D is the identity element of the monoid D.

2. Whenever pw,dq P JiterpeqK, and pwe,deq P JeK, pwwe,d ¨ deq P JiterpeqK.

Similar to left-split, left-iterpeq differs only in the direction in which concatenation is
performed. Formally, Jleft-iterpeqK is the smallest set defined by the following rules:

1. pε, 1Dq P Jleft-iterpeqK.

2. Whenever pw,dq P Jleft-iterpeqK, and pwe,deq P JeK, pwwe,de ¨ dq P Jleft-iterpeqK.

Example 2.1. If the expression echoΣ maps each individual character to itself, then the
expression id “ iterpechoΣq encodes the identity function over all strings. The expression
rev “ left-iterpechoΣq represents the symmetric string reversal function. 4

Function combination. The expression combinepe, fq concatenates the results of e and f,
each applied to the entire string w.

Jcombinepe, fqK “ tpw,de ¨ dfq | pw,deq P JeK and pw,dfq P JfKu. (2.1.7)

In example 2.1, we expressed the identity function, id, by applying the iter combinator to
the single-character echo echoΣ. The string-copy expression copy “ combinepid, idq maps
each input string w to the output ww.



CHAPTER 2. SYNTAX AND SEMANTICS 20

w:
w1 w2 w3 wn´1 wn

d:
d1 d2 dn´1

JeK JeK JeK

Figure 2.1: The semantics of chainpe, rq. The input string w is broken into pieces w “

w1w2 ¨ ¨ ¨wn, where each substring wi P JrK. The sub-expression e is applied to each pair of
subsequent chunks wiwi`1, and the results are concatenated to produce the final output.

Chained sum. The final operator is the chained sum, which allows us to “mix” outputs
produced by different parts of the input string. Given e, and a regular expression r, chainpe, rq
breaks the input string w into pieces, w “ w1w2 ¨ ¨ ¨wn, such that: (a) n ě 2, (b) for each
i, wi P JrK, and (c) for each i, there exists di P D such that pwiwi`1,diq P JeK. Then, w
is mapped to the output d1 ¨ d2 ¨ ¨ ¨dn´1. See figure 2.1. This is a new operator, without a
traditional regular expression counterpart. The motivation is two-fold: first, we believe that
shuffle (which we will see in example 2.6) is inexpressible using the remaining operators,
and second, the operation naturally emerges as an idiom during the proof of theorem 5.1.

Formally, Jchainpe, rqK is the closure of the following rules:

1. For each pair of strings, w1 P JrK and w2 P JrK, and each d P D, if pw1w2,dq P JeK,
then:

pw1w2,dq P Jchainpe, rqK.

2. For all strings w1, w2, w3, and for each pair of values d,de P D, if pw1w2,dq P
Jchainpe, rqK, pw2w3,deq P JeK, w1 P Jr˚K, w2 P JrK, and w3 P JrK, then:

pw1w2w3,d ¨ deq P Jchainpe, rqK.

The symmetric expression left-chainpe, rq is defined by the following rules:

1. For each pair of strings, w1 P JrK and w2 P JrK, and each d P D, if pw1w2,dq P JeK,
then:

pw1w2,dq P Jleft-chainpe, rqK.

2. For all strings w1, w2, w3, and for each pair of values d,de P D, if pw1w2,dq P
Jleft-chainpe, rqK, pw2w3,deq P JeK, w1 P Jr˚K, w2 P JrK, and w3 P JrK, then:

pw1w2w3,de ¨ dq P Jleft-chainpe, rqK.



CHAPTER 2. SYNTAX AND SEMANTICS 21

Symbolic predicates and character transforms. Consider echoΣ, the single-character
echo. Over a finite alphabet, Σ “ ta1,a2, . . . ,aku, echoΣ can be expressed as:

echoΣ “ a1 ÞÑ a1 else a2 ÞÑ a2 else ¨ ¨ ¨ else ak ÞÑ ak.

We will regularly consider large alphabets, such as Unicode (« 128,000 characters and
growing), and even potentially infinite alphabets, such as the set of all measurements produced
by a sensor. In these settings, this approach of explicitly handling each character does not scale.
We therefore extend the basic expressions to allow properties over values to be described
symbolically using predicates. Our formalization here is derived from the recently proposed
model of symbolic transducers [94].

Over each alphabet Σ, pick a non-empty (and potentially even infinite) collection of
predicates ΦΣ. Each predicate is a computable function ϕ : Σ Ñ Bool. We also choose a
collection of basic character transformations, Λ. Each character transform is a computable
function, λ : Σ Ñ Γ . For each predicate ϕ and character transform λ, ϕ ÞÑ λ applies λ to
those characters a P Σ such that ϕpaq “ true:

Jϕ ÞÑ λK “ tpa, λpaqq | a P Σ, and ϕpaq “ trueu. (2.1.8)

We require:

1. that the satisfiability of predicates be decidable, and

2. that ΦΣ be effectively closed under boolean operations: ϕ1 ^ϕ2,ϕ1 _ϕ2, ϕ1 P ΦΣ,
for each ϕ1,ϕ2 P ΦΣ.

We will assume that predicate evaluation, boolean combination, and satisfiability checking
can all be performed in Op1q time. The chosen predicates ΦΣ divide Σ into equivalence
classes called minterms: two values a,b P Σ are equivalent if ϕpaq “ ϕpbq, for all ϕ P ΦΣ.
We refer to the set of minterms of ΦΣ as MintermspΦΣq.

We summarize the syntax of DReX combinators in figure 2.2. The interpretation of regular
expressions is standard: each regular expression r is associated with a language JrK Ď Σ˚,
defined inductively as follows: (a) JϕK “ ta P Σ | ϕpaq “ trueu, (b) JεK “ tεu, (c) JKK “ H,
(d) Jr1 ` r2K “ Jr1KY Jr2K, (e) Jr1 ¨ r2K “ Jr1K ¨ Jr2K, and (f) Jr˚K “ JrK˚.

Example 2.2. Common examples of character predicates and transformations include the clas-
sification of letters into upper- and lower-case variants, isUpperCasepxq and isLowerCasepxq,
and the conversion functions toUpperCasepxq and toLowerCasepxq.

We previously expressed the identity function as id “ iterpechoΣq, where echoΣ is the
single-character echo. Over an arbitrary alphabet, this function can be expressed as echoΣ “
true ÞÑ x. Several variations of this expression are also useful: iterpisLowerCasepxq ÞÑ
toUpperCasepxqq maps sequences of lower-case letters to their upper-case counterparts.
The identity function restricted to strings not containing a space is given by id isSpace “

iterp isSpacepxq ÞÑ xq. More interesting functions can be constructed using the conditional



CHAPTER 2. SYNTAX AND SEMANTICS 22

e, f, . . . ::“ ϕ ÞÑ λ | ε ÞÑ d | bot Transformations
| e else f
| splitpe, fq | left-splitpe, fq
| iterpeq | left-iterpeq
| chainpe, rq | left-chainpe, rq
| combinepe, fq

r ::“ ϕ | ε | K Regular expressions
| r1 ` r2 | r1 ¨ r2 | r

˚

Figure 2.2: The syntax of DReX.

operator: Define:

swCase “ swCase1 else swCase2, where
swCase1 “ isUpperCasepxq ÞÑ toLowerCasepxq, and
swCase2 “ isLowerCasepxq ÞÑ toUpperCasepxq.

The expression swCase flips the case of a single input character, and so iterpswCaseq switches
the case of each character in the input string. 4

Example 2.3 (Minterms). Consider the set of integers Z, and the basic predicates:

p0pxq “ “x ” 0 pmod 3q”,
p1pxq “ “x ” 1 pmod 3q”, and
p2pxq “ “x ” 2 pmod 3q”.

The boolean closure of these 3 basic predicates, ΦZ “ tfalse,p0,p1,p2,p0_ p1,p1_ p2,p2_

p0, trueu contains 8 elements, while there are just 3minterms, corresponding to the predicates
p0, p1 and p2. The number of minterms, |MintermspΦΣq|, is therefore often much smaller
than the number of predicates, |ΦΣ|, and is useful in measuring the computational complexity
of our algorithms. 4

Example 2.4. Mangling filenames is a common operation performed on the command line.
Consider the function strip, which maps full filenames, such as “/home/user/file.txt”,
to just the location, “/home/user”. We wish to drop all characters starting from the last
occurrence of “/”. The following expression performs this operation:

strip “ splitpid, "/" ÞÑ ε,drop "/"q, where
drop "/" “ iterpx ‰ "/" ÞÑ εq

maps all strings not containing an occurrence of “/” to ε. 4



CHAPTER 2. SYNTAX AND SEMANTICS 23

am2shufflepwq : bm1 am3 bm2

am1w: b am2 b am3 b ¨ ¨ ¨ amk´1 b amk b

¨ ¨ ¨ amk bmk´1

Figure 2.3: Defining shufflepwq.

w: P1

P1 P1 P2

P2

P2 P3

P3

P3 ¨ ¨ ¨

¨ ¨ ¨

Pk´1

Pk´1

Pk´1 Pk

Pk

Pk

fpP1,P2q fpP2,P3q fpPk´1,Pkq

P 11 P 12 P 1k´1

Figure 2.4: Expressing shuffle using function combinators. Each patch Pi is a a string of the
form a˚b.

Example 2.5. Given a string of the form “First-Name Last-Name”, the expressions

echoFirst “ splitpid isSpace, isSpacepxq ÞÑ ε, iterptrue ÞÑ εqq, and
echoLast “ splitpiterptrue ÞÑ εq, isSpacepxq ÞÑ ε, id isSpaceq

output “First-Name” and “Last-Name” respectively. The two expressions can be combined into
combinepechoLast, echoFirstq, which outputs “Last-NameFirst-Name”. Note that the space in
between is omitted—the expression

swap “ combinepsplitpechoLast, ε ÞÑ " "q, echoFirstq

preserves this space. 4

Example 2.6 (shuffle). Consider the function shuffle : Σ˚ Ñ Σ˚ from figure 2.3. If Σ “ ta,bu
andw “ am1bam2b ¨ ¨ ¨amkb, with k ě 2, then shufflepwq “ am2bm1am3bm2 ¨ ¨ ¨amkbmk´1 .

We will now express shuffle using the chained sum combinator: we illustrate the main
idea in figure 2.4. We first divide the input w into patches Pi, each of the form a˚b, and the
output into patches P 1i, each of the form a˚b˚. Each input patch Pi should be scanned twice,
first to produce the a-s in P 1i´1, and then again to produce the b-s in P 1i. The pattern of the
input patches is given by r “ a˚b. Consider the expression:

f “ left-splitpsplitpiterpa ÞÑ bq,b ÞÑ εq, splitpiterpa ÞÑ aq,b ÞÑ εqq.



CHAPTER 2. SYNTAX AND SEMANTICS 24

Given two consecutive input patches PiPi`1, f produces the output patch P 1i. It follows that
shuffle “ chainpf, rq. 4

Example 2.7. DReX can also be used to write simple queries in output domains other than
the set of strings. Consider the situation of a customer who frequents a coffee shop. Each cup
of coffee he purchases costs $2, but if he fills out a survey, then all cups of coffee purchased
that month cost only $1 (including cups already purchased). Here Σ “ tC,S,Mu denoting
respectively the purchase of a cup of coffee, completion of the survey, and the passage of a
calendar month. The expression:

m “ m S elsemS, where
m S “ iterpC ÞÑ 2q, and
mS “ splitpiterpC ÞÑ 1q,S ÞÑ 0, iterpC ÞÑ 1 else S ÞÑ 0qq

maps the events of a single month to the customer’s debt. The expression:

coffee “ splitpiterpsplitpm,M ÞÑ 0qq,mq

maps the entire purchase history of the customer to the amount he needs to pay the store. 4

2.1.1 Expression consistency

We have defined DReX expressions as denoting relations, rather than (partial) functions.
A single input string w could thus be mapped to multiple (possibly even infinitely many)
outputs. This is troublesome for the following reasons: (a) All our examples naturally denote
functions, such as id, swap, and shuffle. An expression with multiple outputs is a code smell.
(b) We would ideally like to solve the “function evaluation” problem: find the value of JeKpwq,
given an expression e and an input string w. Therefore, we will now define the class of
“consistent” DReX expressions: the central objects of our study. The main idea is to make the
definitions of the choice, split sum and iteration combinators unambiguous.

Unambiguity. Two languages L1, L2 are unambiguously concatenable if for all strings
u,u 1 P L1, v, v 1 P L2, if uv “ u 1v 1, then u “ u 1 and v “ v 1 (see figure 2.5). A language
L is unambiguously iterable if for all strings u1,u2, . . . ,um P L, v1, v2, . . . , vn P L, if
u1u2 ¨ ¨ ¨um “ v1v2 ¨ ¨ ¨ vn, then m “ n, and ui “ vi for all i. Unambiguous regular
expressions are inductively defined as follows:

1. ϕ, ε, and K are all unambiguous,

2. r1 ` r2 is unambiguous if:

(a) r1 and r2 are both unambiguous, and

(b) Jr1KX Jr2K “ H,

3. r1 ¨ r2 is unambiguous if:



CHAPTER 2. SYNTAX AND SEMANTICS 25

w1 w2 wi wi`1 wj wj`1 wn

u P L1 v P L2

u 1 P L1 v 1 P L2

Figure 2.5: L1 and L2 are unambiguously concatenable if for all u,u 1 P L1 and v, v 1 P L2, if
uv “ u 1v 1, then u “ u 1 and v “ v 1. Equivalently, L1 and L2 are unambiguously concatenable
iff there is no string w P L1L2 with multiple parse trees, as shown in this figure.

(a) r1 and r2 are both unambiguous, and

(b) Jr1K and Jr2K are unambiguously concatenable.

4. r˚ is unambiguous if r is unambiguous and JrK is unambiguously iterable.

Example 2.8. The regular expression a ¨a˚ is unambiguous: the only way to parse a matched
string is to split after the first symbol. The regular expression a˚ ¨ a˚ is a simple example of a
regular expression which is not unambiguous. Next observe that the languages Ja ¨ a˚K and
Jb ¨ b˚K are disjoint. Therefore a ¨ a˚ ` b ¨ b˚ is unambiguous. On the other hand, both a˚

and b˚ match the empty string, and so a˚ ` b˚ is not unambiguous. 4

Remark 2.9. Unambiguity is a property of the regular expression rather than that of the
underlying language. For example, the regular expressions a˚, a˚ ¨ a˚, and pa˚q˚ all denote
the same language,

Ja˚K “ Ja˚ ¨ a˚K “ Jpa˚q˚K “ tan | n P Nu,

but only a˚ is unambiguous. In fact, every regular language can be represented by an
unambiguous regular expression—as we will point out in section 5.1—and this observation
is central to our construction in chapter 5.

Consistency rules. Given a DReX expression e, let Dompeq “ tw | Dd, pw,dq P JeKu be its
domain. Consistent expressions are inductively defined as follows.

1. The base expressions ϕ ÞÑ λ, ε ÞÑ d, and bot are always consistent.

2. e else f is consistent if:

(a) both sub-expressions e and f are consistent, and

(b) Dompeq X Dompfq “ H.

3. splitpe, fq and left-splitpe, fq are consistent if:

(a) both sub-expressions e and f are consistent,



CHAPTER 2. SYNTAX AND SEMANTICS 26

(b) Dompfq ‰ H, and

(c) Dompeq and Dompfq are unambiguously concatenable.

4. iterpeq and left-iterpeq are consistent if:

(a) e is consistent, and

(b) Dompeq is unambiguously iterable.

5. chainpe, rq and left-chainpe, rq are consistent if:

(a) e is consistent and r is unambiguous,

(b) Dompeq “ Jr ¨ rK, and

(c) JrK is unambiguously iterable.

6. combinepe, fq is consistent if:

(a) both sub-expressions e and f are consistent, and

(b) Dompeq “ Dompfq.

For splitpe, fq and left-splitpe, fq, observe that one of the consistency requirements is that
Dompfq ‰ H: This requirement will later turn out to be convenient (but not crucial) for
the proof of lemma 6.10, which claims that the evaluation algorithm is correct for these
combinators. In any case, this is not a severe restriction because for all expressions fK with
DompfKq “ H, splitpe, fKq and left-splitpe, fKq are both equivalent to bot.

Theorem 2.10, proved by structural induction on e, is a straightforward consequence of
the semantics and the above consistency rules.

Theorem 2.10. If e is a consistent DReX expression, and w P Σ˚ such that pw,dq P JeK and
pw,d 1q P JeK, then d “ d 1. In other words, JeK : Σ˚ Ñ D is a partial function.

Complexity of consistency checking. The following theorem establishes the complexity
of consistency checking, and its proof will follow from proposition 2.12.

Theorem 2.11. The consistency of a DReX expression e can be determined in time polyp|e|
|MintermspΦΣq|q.

The main subroutines required to establish consistency are checking unambiguity of
regular expressions and determining their equivalence. The complexities of these sub-tasks
are established by the following results.

Proposition 2.12. 1. Whether a given regular expression r is unambiguous is decidable in
time polyp|r||MintermspΦT q|q.

2. Given two unambiguous regular expressions r1 and r2, whether Jr1K “ Jr2K is decidable
in time polyp|r1||r2||MintermspΦT q|q [86].











Chapter 5

Converting Transducers into Function
Expressions

In the previous chapter, we presented algorithms to convert QREs and DReX expressions into
equivalent transducers. In this chapter, we will prove the converse:

Theorem 5.1 (Completeness). 1. For every SSTM, we can construct an equivalent consis-
tent DReX expression e.

2. For every SSTTM, we can construct an equivalent consistent, well-typed, and single-use
QRE e.

Wewill build on the classical algorithm to convert DFAs into equivalent regular expressions.
In the traditional construction, the task is to build a representation for the set of strings,

Lq,q 1 “ tw P Σ
˚ | qÑw q 1u,

which lead the automaton from the initial state q to the final state q 1. In case of transducers,
we are additionally interested in the way in which the register values are modified during
execution: strings may be appended before and after the initial values, and register contents
may be concatenated in complicated ways. We will perform a double induction, first by
constraining the set of intermediate states the execution may visit, and then by constraining
the patterns of register updates along the execution. This proof is therefore themost technically
challenging argument of this thesis.

Except for the lowest levels, the construction for both QREs and DReX expressions are
very similar. For ease of presentation, we will first present the proof in full detail for the case
of SSTs, and describe the differences in the case of term transducers in section 5.11. For the
rest of this chapter, we fix an SSTM “ pQ,V,Σ,D, δ,µ,q1, F,νq, whereQ “ tq1,q2, . . . ,qnu
and V “ tv1, v2, . . . , vku, with k ě 1.1

1The k ě 1 assumption is needed because we will freely speak of the “domain of an expression vector”, an
intermediate object we will introduce in the construction, and this does not make sense if k “ 0. Notice that
theorem 5.1 is simple for SSTs with V “ H, because they always output one of only a finite set of values.

66



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 67

5.1 Motivation

From DFAs to regular expressions. From the control structure of M, we can naturally
extract a DFA A “ pQ,Σ, δ,q1, Fq. We first recap the classical algorithm [85] that transforms
the DFA A into an equivalent unambiguous regular expression. Our algorithm to convert
transducers into function expressions will piggyback on this translation; hence this review.

Recall that Q “ tq1,q2, . . . ,qnu. The idea is to iteratively compute, for each i P
t0, 1, 2, . . . ,nu, and for each pair of states q,q 1 P Q, a regular expression rpiqpq,q 1q, which
matches exactly those non-empty strings w such that:

1. qÑw q 1, and

2. the path σ “ qÑw q 1 only visits intermediate2 states in the set tq1,q2, . . . ,qiu.

These regular expressions are defined as follows:

rp0qpq,q 1q “ ta P Σ | qÑa q 1u, and (5.1.1)

rpi`1qpq,q 1q “ rpiqpq,q 1q ` rpiqpq,qi`1q ¨ r
piqpqi`1,qi`1q

˚ ¨ rpiqpqi`1,q 1q. (5.1.2)

The language accepted by A can now be represented by the regular expression:

rA “

#

ε`
ř

qfPF
rpnqpq1,qfq if q1 P F, and

ř

qfPF
rpnqpq1,qfq otherwise.

Each string w in Jrpi`1qpq,q 1qK either passes through qi`1 along the way, or it does not.
If it does, then it can unambiguously be divided into substrings which match rpiqpqi`1,qi`1q

between subsequent visits to qi`1. The constructed expression rpiqpq,q 1q is therefore unam-
biguous, for all i, q, q 1. Furthermore, it only matches non-empty strings, and therefore, the
final regular expression rA is also unambiguous.

The “effect” of a string. The effect of processing a string is to change the state of the
machine. In a DFA, this effect can be described by a table of the form:

effectpwq “

$

’

’

&

’

’

%

q1 ÞÑ q 11
q2 ÞÑ q 12
¨ ¨ ¨

qn ÞÑ q 1n,

indicating the state q 1i in which the DFA would terminate, in case it processed w starting
from qi. The string w is entirely described by its effect: if w and w 1 have the same effect,
then for all contexts wpre and wpost, wpre ¨w ¨wpost is accepted by the DFA iff wpre ¨w

1 ¨wpost
is also accepted by the machine.

2i.e. excluding the initial state q and terminal state q 1.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 68

q1start q2
q3

x

a
L

z :“ z ¨ b

b

O x :“ x ¨ y
y :“ z
z :“ ε

a

N

x :“ x ¨ a
z :“ z ¨ b

b

O x :“ x ¨ y
y :“ z
z :“ ε

a

N

x :“ x ¨ a
z :“ z ¨ b

b

O x :“ x ¨ y
y :“ z
z :“ ε

Figure 3.2: SSTM2 which computes the function shuffle from figure 2.3. (Repeated from
page 47.)

The state space Q is finite, and so the space of effects QÑ Q is also finite. The DFA-to-
regular-expression construction, equations 5.1.1 and 5.1.2, classifies strings by their effect on
the automaton.

In the case of SSTs, in addition to changing the control state, processing a string also
results in the register values being updated. Recall the SSTM2 from figure 3.2. Consider
the input string baab processed from state q2. The string may be summarized by the pair
pq3 “ δpq2,baabq, tx ÞÑ xyaaz,y ÞÑ bb, z ÞÑ εuq, where q3 “ δpq2,baabq is the final state,
and the register update x ÞÑ xyaaz indicates the final value of x in terms of the initial register
valuation. See figure 5.2. Similarly, the input string aab, when processed starting from the
state q2, may be summarized as pq3, tx ÞÑ xaay,y ÞÑ zbb, z ÞÑ εuq. Unlike in the case of
DFAs, the space of effects is no longer finite, because of the unbounded nature of register
updates.

String summaries. In step i of the transducer-to-function expression translation, we con-
sider all strings w P Jrpiqpq,q 1qK, for each pair of states q, q 1. By limiting our attention to
strings in Jrpiqpq,q 1qK, we have fixed the effect of w on the control state. The idea is to write
DReX expressions which describe the effect of w on the register values. There are possibly
many registers in the SST, and so we will construct a collection of DReX expressions, i.e. an
“expression vector”. Informally, the expression vectors will together summarize the effect of
all strings w P Jrpiqpq,q 1qK.

Let us first concentrate on the patterns in which register values are updated during
computation. For the strings baab and aab, these are, respectively, tx ÞÑ s1xs2ys3zs4,y ÞÑ
s5, z ÞÑ s6u and tx ÞÑ s1xs2ys3,y ÞÑ s4zs5, z ÞÑ s6u, for some input-string dependent
constants s1, s2, . . . , s6 P D. We call these patterns, S : V Ñ V˚, the “shapes” of the input
strings. Observe that all input strings w of the form a˚ ¨ b starting from the state q2 have the
same shape, as we see in figure 5.2d.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 69

q2 q3 q2 q2 q3
b a a b

x

y

z

x ¨ y

z

ε

x ¨ y ¨ a

z

b

x ¨ y ¨ a ¨ a

z

b ¨ b

x ¨ y ¨ a ¨ a ¨ z

b ¨ b

ε

(a)

q2 q3
b ¨ a ¨ a ¨ b

x

y

z

x ¨ y ¨ aa ¨ z

bb

ε

(b)

q2 q3
a ¨ a ¨ b

x

y

z

x ¨ aa ¨ y

z ¨ bb

ε

(c)

q2 q3
an ¨ b

x

y

z

x ¨ an ¨ y

z ¨ bn

ε

(d)

Figure 5.2: We are referring to the SSTM2 from figure 3.2. In figure 5.2a, we see the run
of the string baab starting from the state q2. In figure 5.2b, we have collapsed it into a
summary, showing only the final state and the final register values in terms of their original
values. Figure 5.2c shows a similar summary for the string aab, starting from the state q2.
In fact, all strings of the form a˚ ¨ b share the same shape, as we see in figure 5.2d.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 70

We will gather all strings w in rpiqpq,q 1q with a given shape S, and construct function
expressions which map the input string w to the specific constants si in the shape. For
example, consider strings w of the form a˚ ¨ b, starting from the state q2. The constants s1,
s2, . . . , s6 are then computed by the following function expressions:

e1 “ e3 “ e4 “ e6 “ a
˚ ¨ b ÞÑ ε,

e2 “ splitpiterpa ÞÑ aq,b ÞÑ εq, and
e5 “ splitpiterpa ÞÑ bq,b ÞÑ εq.

In step i of the transducer-to-function expression translation, for each shape S, we construct
an expression vector RpiqS pq,q

1q: this is a collection of DReX expressions, one for each string
constant s1, s2, . . . . For each string w P Jrpiqpq,q 1qK with shape S, the k-th element of the
expression vector ek “ RpiqS,kpq,q

1q computes the value of sk: sk “ JekKpwq.
As another example, consider the self-loop inM2 at the state q1 on the symbol a. All

strings w “ an have the same shape tx ÞÑ s1xs2,y ÞÑ s3ys4, z ÞÑ s5zs6u. The specific string
constants are:

s1 “ s2 “ s3 “ s4 “ s5 “ ε, and
s6 “ b

n.

Each constant sm is computed by the function expression em, where:

e1 “ e2 “ e3 “ e4 “ e5 “ a
˚ ÞÑ ε, and

e6 “ iterpa ÞÑ bq.

Chapter outline. We will formally define shapes and expression vectors in section 5.2, and
describe some basic operations over them in section 5.3. In section 5.4, we will explicitly
construct the base expression vectors, Rp0qS pq,q

1q. In sections 5.5–5.10, we will describe the
inductive construction of Rpi`1q

S pq,q 1q. The chained sum is crucial to this construction: it will
appear in the final step of the construction in section 5.9. In section 5.11, we will show how
the proof technique can be generalized to handle the case of term transducers.

5.2 A Theory of Shapes

Definition 5.2. A shape S : V Ñ V˚ is a copyless function over the set of registers V . Given an
initial state q and an input stringw P Σ˚, let σ “ qÑw q 1 be the corresponding path through
M. The shape of the path σ is the function Sσ : V Ñ V˚ such that for all registers v P V , Sσpvq
is the projection onto V of the register update expression, µpq,w, vq: Sσpvq “ πVpµpq,w, vqq.

Because the register set V is finite, there are only a finite number of copyless functions,
S : V Ñ V˚. The space of shapes is therefore finite.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 71

x

y

z

x

y

z

(a) q1 Ñ
a q1, SK.

x

y

z

x

y

z

1

2

(b) q2 Ñ
b q3.

x

y

z

x

y

z

1

2

3

(c) q2 Ñ
bb q3, SJ.

x

y

z

x

y

z

1

2

(d) Shape of the update
x :“ yz, y :“ x, x :“ ε.

x

y

z

x

y

z

1

2

(e) Shape S1 of the up-
date x :“ x, y :“ yz,
z :“ ε.

x

y

z

x

y

z

1

2

(f) Shape S2 of the up-
date x :“ xz, y :“ y,
z :“ ε.

Figure 5.3: Visualizing shapes as bipartite graphs. Figures 5.3a–5.3c describe the shapes
of some paths in the SSTM2 from figure 3.2. With the order x ă y ă z, only the shape in
figure 5.3d is not upward-flowing. We will refer to the shapes in figures 5.3a, 5.3c, 5.3e,
and 5.3f later in this chapter. For convenience, we name them SK, SJ, S1, and S2 respectively.
The names SK and SJ are motivated by their position in the pre-order Ď defined in section 5.7.

Example 5.3. It is helpful to visualize shapes as bipartite graphs, as in figure 5.3. When
multiple edges lead to the same vertex, such as x Ñ x, y Ñ x, and z Ñ x in figure 5.3c,
the numbers on the edges disambiguate the order: so SJpxq “ xyz. An edge uÑ v can be
informally read as “The value of u flows into v”. Because of the copylessness restriction, every
node on the left is connected to at most one node on the right. 4

When two paths are concatenated, their shapes are combined. We define the concatenation
S1 ¨ S2 of two shapes S1 and S2 as follows. Given a register v P V , let S2pvq “ v1v2 ¨ ¨ ¨ vk. For
each i P t1, 2, . . . ,ku, define si “ S1pviq. Notice that si P V˚ is a sequence of register names.
Our definition of pS1 ¨ S2qpvq P V

˚ should also be a sequence of register names. We define

pS1 ¨ S2qpvq “ s1s2 ¨ ¨ ¨ sk,

i.e. the concatenation of the individual sequences si. Informally, the concatenation of shapes
corresponds to the composition of their bipartite graph visualizations. By definition, therefore:



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 72

Proposition 5.4. Let σ “ q Ñw q 1 and σ 1 “ q 1 Ñw
1

q2 be two paths through an SST M,
such that the final state q 1 of σ is the same as the initial state of σ 1. Then, for all registers v,
Sσ¨σ 1pvq “ pSσ ¨ Sσ 1qpvq.

Let S be the shape of a path σ “ q Ñw q 1 through an SST. Consider a register v
so that Spvq “ v1v2 ¨ ¨ ¨ vk. The summary update for register v is therefore of the form
µpq,w, vq “ s1v1s2v2 ¨ ¨ ¨ vksk`1. We call each position pv,mq, for m P t1, 2, . . . , |Spvq| ` 1u a
patch in the corresponding shape.

Definition 5.5. An expression vector A for a shape S is a map from patches pv,mq to
consistent DReX expressions, Av,m : Σ˚ ù D, such that all the expressions have the same
domain: DompAv,mq “ DompAv 1,m 1q for all patches pv,mq and pv 1,m 1q.

Pick a language L Ď Σ˚, and a state q P Q such that all strings w when processed starting
from q have the same shape S. An expression vector A summarizes L if (a) for each string
w P L each patch pv,mq of S,

JAv,mKpwq “ sv,m,

where sv,m is the constant appearing at positionm in µpq,w, vq, and (b) for each component
expression, Av,m, DompAv,mq “ L.

Example 5.6. Consider the loop a˚ at the state q2 ofM2. Consider the concrete string ak.
The effect of this string is to update x :“ x ¨ ak, y :“ y, and z :“ z ¨ bk. The shape of this set
of paths is therefore the identity function S “ tx ÞÑ x,y ÞÑ y, z ÞÑ zu. Define the expression
vector A as follows:

Ax,1 “ Ay,1 “ Ay,2 “ Az,1 “ a˚ ÞÑ ε,
Ax,2 “ iterpa ÞÑ aq, and
Az,2 “ iterpa ÞÑ bq.

Then A summarizes the set of paths a˚ starting from the state q2. 4

We now restate the desired invariant (informally described in the proof outline in sec-
tion 5.1):

Invariant 5.7. In step i of the SST-to-DReX expression translation, the expression vector
RpiqS pq,q

1q summarizes all paths in rpiqpq,q 1q with shape S.

5.3 Operations on Expression Vectors

Choice. Let A and B be expression vectors, both for the same shape S, but with disjoint
domains, DompAq X DompBq “ H. The conditional choice, A else B is an expression vector
for S defined as follows: for each patch pv,mq of S,

pA else Bqv,m “ Av,m else Bv,m. (5.3.1)

Each component expression pA else Bqv,m is consistent because the sub-expressions have
disjoint domains.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 73

Proposition 5.8. If L,L 1 Ď Σ˚ are disjoint sets of paths starting from the same state q such
that all stringsw P LYL 1 have the same shape S, and are summarized by the expression vectors
A and A 1 respectively, then A else A 1 summarizes all paths in LY L 1.

If A1, A2, . . . is a family of expression vectors with pairwise-disjoint domains, then we
write

ř

Aj for their combination using the else combinator (
ř

Aj “ bot if the family of
component expression vectors is empty).

Shifting domains. Given a DReX expression e and a regular expression r, we write shiftpe, rq
for the “left-shifted” expression which splits the input stream w into w “ w1 ¨w2, such that
the suffix w2 matches r, and applies e to the prefix w1:

shiftpe, rq “

#

splitpe, r ÞÑ εq if JrK ‰ H, and
bot otherwise.

The expression is consistent if e is consistent, r is unambiguous, and Dompeq and JrK are
unambiguously concatenable. Similarly, the “right-shifted” expression shiftpr, eq is defined as:

shiftpr, eq “

#

splitpr ÞÑ ε, eq if Dompeq ‰ H, and
bot otherwise.

These “expression-level” operations, shiftpe, rq and shiftpr, eq can be naturally lifted to
entire expression vectors shiftpA, rq and shiftpr,Aq:

shiftpA, rqv,m “ shiftpAv,m, rq, and
shiftpr,Aqv,m “ shiftpr,Av,mq.

Concatenation. Pick three states q,q 1,q2 in the given SST, and let L be a set of strings
from q to q 1 with shape S, and L 1 be a set of strings from q 1 to q2 with shape S 1. Then strings
w P L ¨ L 1 transition from q to q2 and have shape S ¨ S 1. Say the expression vectors A and
A 1 summarize all paths in L and L 1 respectively. We will now construct an expression vector
A ¨A 1 which summarizes all paths in L ¨ L 1.

The idea is to left-shift the component expressions in A by DompA 1q, right-shift the
component expressions in A 1 by DompAq and appropriately combine the results.We first
demonstrate the construction with an example.

Example 5.9. As before, we are referring to the SSTM2 from figure 3.2. Consider the set
of strings L “ Ja˚K which loop in the state q2, and the set of strings L 1 “ Jb ¨ b ¨ b˚K which
transition from q2 to q3. The shape of strings w P L is the identity function S “ tx ÞÑ

x,y ÞÑ y, z ÞÑ zu, and the shape of strings w 1 P L 1 is S 1 “ tx ÞÑ x ¨ y ¨ z,y ÞÑ ε, z ÞÑ εu. We
have already constructed the expression vector A which summarizes L in example 5.6. The
following expression vector A 1 summarizes strings in L 1:

A 1x,1 “ A 1x,2 “ A 1x,3 “ A 1x,4 “ A 1y,1 “ A 1z,1 “ b ¨ b ¨ b˚ ÞÑ ε.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 74

Now pick a string w ¨w 1 such that w P L and w 1 P L 1 and consider the run ofM2 starting
from the state q2. After processing w, the register values x 1, y 1 and z 1 are given by:

x 1 “ x ¨ Jiterpa ÞÑ aqKpwq
“ x ¨ Jshiftpiterpa ÞÑ aq,b ¨ b ¨ b˚qKpw ¨w 1q,

y 1 “ y, and
z 1 “ z ¨ Jiterpa ÞÑ bqKpwq
“ z ¨ Jshiftpiterpa ÞÑ bq,b ¨ b ¨ b˚qKpw ¨w 1q.

After processing w 1, the register values x2, y2, and z2 are given by:

x2 “ sx 1sy 1sz 1s,
y2 “ s, and
z2 “ s, where
s “ Jb ¨ b ¨ b˚ ÞÑ εKpw 1q
“ Jshiftpa˚,b ¨ b ¨ b˚ ÞÑ εqKpw ¨w 1q.

The combined expression vector A ¨A 1, defined as

pA ¨A 1qx,1 “ pA ¨A 1qx,3 “ pA ¨A 1qy,1 “ pA ¨A 1qz,1 “ shiftpa˚,b ¨ b ¨ b˚ ÞÑ εq,
pA ¨A 1qx,2 “ combinepshiftpiterpa ÞÑ aq,b ¨ b ¨ b˚q, shiftpa˚,b ¨ b ¨ b˚ ÞÑ εqq, and
pA ¨A 1qx,4 “ combinepshiftpiterpa ÞÑ bq,b ¨ b ¨ b˚q, shiftpa˚,b ¨ b ¨ b˚ ÞÑ εqq

summarizes all strings w ¨w 1 P L ¨ L 1. 4

We will now define the concatenation operation A ¨A 1 for arbitrary expression vectors A
and A 1. As a first step, we define “shifted” expression vectors:

As “ shiftpA,DompA 1qq, and
A 1s “ shiftpDompAq,A 1q.

Pick a register v and let

v :“ e1v1e2v2 ¨ ¨ ¨ v
1
lel 1`1

be the update expression for v in A 1s. For each register vm in the right-hand side, let

vm :“ em,1vm,1em,2vm,2 ¨ ¨ ¨ vm,lem,l`1

be the update expression in As. View string concatenation as the expression combinator
“combine”, and substitute the expression for each vm in As into the expression for v in A 1s.
Define pA¨A 1qv,m as them-th expression in the string that results. The component expressions
are consistent because DompAsq “ DompA 1sq.

Proposition 5.10. For all states q, q 1 and q2, for every pair of states S, S 1, if the expression
vectors A and A 1 summarize paths L Ď tw P Σ˚ | q Ñw q 1,Sw “ Su and L 1 Ď tw P Σ˚ |

q 1 Ñw q2,Sw “ S 1u respectively, then the expression vector A ¨ A 1 summarizes all strings
w P L ¨ L 1.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 75

5.4 The Base Case: Rp0qS pq,q 1q

Pick a symbol a P Σ, and a pair of states q,q 1 P Q. If qÑa q 1, and the shape of the (single
transition) path is S, then define RpaqS pq,q 1q as follows. For each patch pv,kq in S:

RpaqS,v,kpq,q
1q “ a ÞÑ sk,

where sk is the k-th constant appearing in the update expression µpq,a, vq. Otherwise,
RpaqS,v,kpq,q

1q “ bot. The base expression vectors are defined as:

Rp0qS pq,q
1q “

ÿ

aPΣ

RpaqS pq,q 1q. (5.4.1)

By construction, we have the following proposition:

Proposition 5.11. For each pair of states q,q 1 P Q, and each shape S, Rp0qS pq,q
1q summarizes

all paths w P rp0qpq,q 1q with shape S.

5.5 Motivating the Inductive Step: Rpi`1q
S pq,q 1q

We now have to construct Rpi`1q
S pq,q 1q, which summarizes strings of the form rpi`1qpq,q 1q

and with shape S. In section 5.3, we defined the choice operator over expression vectors: if
CSpq,q 1q summarizes strings of the form rpiqpq,qi`1q ¨ r

piqpqi`1,qi`1q
˚ ¨ rpiqpqi`1,q 1q, then

we can define:

Rpi`1q
S pq,q 1q “ RpiqS pq,q

1q else CSpq,q 1q. (5.5.1)

We have also defined the concatenation operator over expression vectors: if for each interme-
diate shape S2, BS2 summarizes strings matching rpiqpqi`1,qi`1q

˚ with shape S2, then we
can write:

CSpq,q 1q “
ÿ

S1¨S2¨S3“S

RpiqS1
pq,qi`1q ¨ BS2 ¨R

piq
S3
pqi`1,q 1q. (5.5.2)

The consistency of CSpq,q 1q and Rpi`1q
S pq,q 1q follows from the unambiguity of rpi`1qpq,q 1q

in equation 5.1.2. Therefore, in the rest of the construction, our goal is to construct BS, for
each shape S.

5.6 Ordering the Registers

Register values may flow in complicated ways: consider for example, the shape in figure 5.3d.
The construction of BS is greatly simplified if we can assume that register values only flow
“upwards”:



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 76

q q 1

x

y

z

x

y

z

a

(a) Before,M.

pq, fq

x ÞÑ x

y ÞÑ y

z ÞÑ z

pq 1, f 1q

x ÞÑ z

y ÞÑ x

z ÞÑ y

x

y

z

x

y

z

a

(b) After,M 1.

Figure 5.4: Modifying an SST to mandate a register order. The annotations on each state
of M 1 indicate the mapping between the “logical” registers and the “physical” registers.
Proposition 5.13 says that, in this way, we can transform an arbitrary SST into one which is
upward-flowing.

Definition 5.12. Fix a total order over the registers ĺ. A path σ “ qÑw q 1 with shape S is
upward-flowing if for each pair of registers x,y, if y occurs in Spxq, then x ĺ y. The entire
SSTM is upward-flowing if each of its update expressions is also upward-flowing.

For example, in figure 5.3, with the order x ă y ă z, only the shape in figure 5.3d is not
upward-flowing. If each of the transitions in a path is upward-flowing, then the entire path is
itself upward-flowing.

Proposition 5.13. For every SSTM, there is an equivalent upward-flowing SSTM 1.

Proof. The idea is to decouple the “logical” registers ofM from the “physical” locations in
which intermediate data is stored. We construct states which are pairs pq, fq, where q is
the corresponding state in M and the “register renaming” function f : V Ñ V associates
each logical register ofM 1 with a physical register. We will construct the transition function
δ 1 : Q 1 ˆ ΣÑ Q 1, so that the register values flow only upwards during each transition. See
figure 5.4.

Formally, we will construct a machineM 1 “ pQ 1,V,Σ,D, δ 1,µ 1,q 10, F 1,ν 1q, where the set
of states, Q 1 consists of pairs pq, fq, where q P Q, and f : V Ñ V is a bijection.

Let f : V Ñ V be the register renaming function in the state pq, fq. Consider a state
transition qÑa q 1 in the original machine. The successor register renaming f 1 : V Ñ V is
obtained as follows. If µpq,a, vq contains at least one register v 1, then define:

f 1pvq “ mintfpv 1q | v 1 occurring in µpq,a, vqu. (5.6.1)



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 77

In the above expression, the minimum is taken over the register ordering ĺ. Informally, we
have defined the physical register for v to be the minimum of the physical locations of all
logical registers on which it depends. For all other registers v such that no registers occur in
µpq,a, vq, arbitrarily assign f 1pvq so that f 1 is a bijection. This is always possible, because for
all distinct v, v 1, such that both f 1pvq and f 1pv 1q are defined by equation 5.6.1, f 1pvq ‰ f 1pv 1q
because of the copylessness of the original SST.

The register renaming function f : V Ñ V can naturally be lifted to entire strings
f̂ : pV Y Dq˚ Ñ pV Y Dq˚:

f̂pεq “ ε,

f̂pv ¨ lq “ fpvq ¨ f̂plq, if v P V, and

f̂pd ¨ lq “ d ¨ f̂plq, for d P D.

1. Define the state transition function δ 1 as follows: if δpq,aq “ q 1, then δ 1ppq, fq,aq “
pq 1, f 1q.

2. Let vl “ f 1´1pvq be the “true” logical register corresponding to the physical register v.
Define the register update expression µ 1ppq, fq,a, vq “ f̂pµpq,a, vlqq.

3. Pick an arbitrary initial register renaming f0 : V Ñ V and let the initial state be
q 10 “ pq0, f0q.

4. The final states F 1 “ tpq, fq | q P Fu: a state pq, fq is accepting iff the original state q
was itself accepting inM.

5. For each final state pq, fq P F 1, define the output function ν 1ppq, fqq “ f̂pνpqqq.

It can be verified thatM andM 1 are equivalent, and thatM 1 is upward-flowing.

We will now assume that all SSTs and shapes under consideration are upward-flowing,
and we elide this assumption in all definitions and theorems.

5.7 A Preorder over Shapes

We will now make the observation that some shapes cannot be used in the construction of
other shapes. Consider the shapes S1 and SJ from figure 5.3. Let σ “ q Ñw q 1 be a path
through the SST with shape S1. As a sample of the main result of this section, we will now
argue that no sub-path of σ can have shape SJ.

Assume otherwise, so that σ “ q Ñw1 q1 Ñ
w2 q2 Ñ

w3 q 1 where the sub-path σ 1 “
q1 Ñ

w2 q2 has shape SJ. Then, the values of all three registers at q1 flow into q2 at the end
of σ 1, and therefore, along the prefix path qÑw1 q1 Ñ

w2 q2, the initial value of y flows into
x. We also know that the registers are only upward flowing, and therefore, once y has been
“promoted” to x, it is impossible for the suffix q2 Ñ

w3 q 1 to restore this value to register y.
But the shape of the entire path S1 states that the initial value of y flows into the final value
of y, leading to a contradiction.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 78

In this section, we will define a pre-order Ď over the space of upward-flowing shapes
which captures the notion of “can appear as a sub-path”.

Definition 5.14. The support of a shape S is defined as:

SupppSq “ tv P V | v occurs in Spvqu. (5.7.1)

If S and S 1 are two shapes, then we say that S Ă S 1 iff SupppSq Ľ SupppS 1q. We call the
shapes support-equal, and write S „ S 1 if SupppSq “ SupppS 1q. Finally, S Ď S 1 iff either
S Ă S 1 or S „ S 1.

For example, the shape SK from figure 5.3 is the bottom element of Ď and SK Ă SJ.
S1 „ S2, and both shapes are strictly sandwiched between SK and SJ. The relation Ď is easily
verified to be a preorder: (a) every shape is support-equal with itself, and Ď is therefore
reflexive, and (b) if S Ď S 1 Ď S2, then SupppSq Ě SupppS 1q Ě SupppS2q, so that S Ď S2: it is
therefore also transitive. The following two claims, 5.15 and 5.16, formalize the intuition
that Ď and „ describe the possible shapes of sub-paths.

Proposition 5.15. Let σ “ qÑw q 1 be a path through the SSTM with shape S, and σ 1 be a
subpath of σ with shape S 1. Then S 1 Ď S.

Proof. Assume otherwise, so S 1 ­Ď S. Then, SupppS 1q Ğ SupppSq, so there is some register v
such that v P SupppSq and v R SupppS 1q. The effect of the entire path σ is to make the initial
value of v flow into itself, but on the sub-path σ 1, the value of v is either lost or promoted to
some upper register v 1. The first case (the initial value of v is lost during σ 1) immediately
leads to a contradiction, while the second case (the initial value of v is promoted to some
upper register v 1) leads to a contradiction together with the assumption that all paths through
M are upward-flowing.

Proposition 5.16. Let there be k registers in the SSTM. Pick k`1 strings,w1,w2, . . . ,wk,w 1

P Σ˚, and a path σ “ q0 Ñw1 q1 Ñw2 q2 Ñw3 ¨ ¨ ¨ Ñwk qk Ñw
1

q 1 through the SST such
that for each i P t1, 2, . . . ,ku, the shape Si of the subpath qi´1 Ñ

wi qi is support-equal to the
shape S of the entire path σ. Then the prefix sub-path q0 Ñw1w2¨¨¨wk qk also has shape S.

Proof. Assume otherwise. Let w “ w1w2 ¨ ¨ ¨wk, so that σ 1 “ q0 Ñw qk has some shape
S 1 ‰ S. The concatenation of paths with support-equal shapes also produces a path with the
same support: we conclude that S 1 „ S. There are now three cases:

1. For some register u R SupppSq, u flows into v in S, but does not flow into any register
in S 1. This indicates that the initial value of u is lost while processing the prefix w, but
somehow regained while processing the suffix w 1 so that it can eventually flow into v.
This is a contradiction.

2. For some register u R SupppSq, there exist distinct registers v ‰ v 1, such that uÑ v in
S and uÑ v 1 in S 1.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 79

Starting with u, consider the sequence of registers uÑS1 u1 Ñ
S2 u2 Ñ

S3 ¨ ¨ ¨ ÑSk uk
through which the initial value of u flows. Notice that uk “ v 1. All the shapes are
upward-flowing, so according to the total order over the registers,

u ľ u1 ľ u2 ľ ¨ ¨ ¨ ľ uk “ v
1.

If any of the above inequalities is non-strict, i.e. ul “ ul`1, then ul P SupppSl`1q,
and the chain collapses by the assumption of support equality: ul “ ul`1 “ ul`2 “

¨ ¨ ¨uk “ v 1, and therefore also v “ v 1, contradicting the assumption that v ‰ v 1.
Therefore, all inequalities have to be strict. Now notice that the register-promotion
chain u ŋ u1 ŋ u2 ŋ ¨ ¨ ¨ ŋ uk is k` 1 elements long, but there are only but there are
only k registers in the SST. This again leads to a contradiction.

3. For some register v P SupppSq, the order of registers in Spvq and S 1pvq are different.
For some registers u, w, the register u occurs before w in Spvq, but u occurs after w in
S 1pvq. However, once the values of u and w have been appended to v in the order wu,
the suffix qk Ñw

1

q 1 cannot separate them to be recast in the order uw. It is thus a
contradiction that u occurs before w in Spvq.

The previous proposition also highlights the importance of stable shapes: an upward-
flowing shape S is stable if for all registers u, v, if uÑ v in S, then vÑ v. By an argument
similar to that used in case 2 above, it can be proved that:

Proposition 5.17. Let there be k registers in the SSTM. Let σ “ q0 Ñw1 q1 Ñw2 q2 Ñw3

¨ ¨ ¨ Ñwk qk be a path through the SST such that for each j P t1, 2, . . . ,ku, the shape Sj of the
subpath wj is support-equal to the shape S of the entire path σ. Then the shape S is stable.

Informally, non-stable shapes cannot be generated by “very long” loops, and therefore,
the most important case in the construction of BS is that of stable shapes.

5.8 Decomposing Loops: The S-Decomposition

Starting with section 5.5, our goal has been to construct BS, for each shape S. BS summarizes
all strings of the form rpiqpqi`1,qi`1q

˚, and with shape S. In section 5.6 we restricted the
space of shapes to only those that are upward-flowing, and in section 5.7, we defined a
partial order Ď over shapes which constrained the possible shapes of sub-paths. In this section
and in section 5.9, we will construct BS. Our construction of BS is inductive: we assume
that BS 1 is known for all strictly smaller shapes S 1 Ĺ S. Furthermore, since each string in
rpiqpqi`1,qi`1q is non-empty, ε R Jrpiqpqi`1,qi`1q

`K. We therefore separately handle the
case of ε and we will now construct an expression vector B`S which summarizes strings (all
necessarily non-empty) in rpiqpqi`1,qi`1q

` and with shape S. Define the expression vector
BεS as follows:

BεS,v,i “

#

ε ÞÑ ε if S “ tx ÞÑ x,y ÞÑ y, z ÞÑ zu, and
bot otherwise.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 80

qi`1 qi`1 qi`1 qi`1 qi`1 qi`1 qi`1 qi`1
S1 „ S

w1

S2 „ S

w2

¨ ¨ ¨ Sj „ S

wj

¨ ¨ ¨ Sl „ S

wl

Sf Ă S

wf

qi`1 qi`1 qi`1
Spre Ă S

wpre P Jrpiqpqi`1,qi`1q
˚K

Ssuff

wsuff P Jrpiqpqi`1,qi`1qK

Figure 5.5: Decomposing paths in rpiqpqi`1,qi`1q
` whose shape is S. Each w P

tw1,w2, . . . ,wlu has shape Sw „ S, and each of its proper prefixes wpre has shape Spre Ĺ S.
Equivalently w P LfirstpSwq. Each string w P tw1,w2, . . . ,wlu can itself be unambiguously
written as w “ wpre ¨ wsuff, with wsuff P Jrpiqpqi`1,qi`1qK being a single iteration of the
qi`1 Ñ qi`1 loop.

Then we can write:

BS “ BεS else B`S . (5.8.1)

S-decompositions. Consider any path w P Jrpiqpqi`1,qi`1q
`K with shape S. From proposi-

tions 5.15 and 5.16, we can unambiguously decompose w “ w1w2 ¨ ¨ ¨wlwf, where:

1. each substringw 1 P tw1,w2, . . . ,wl,wfu is a self-loop at qi`1: w 1 P Jrpiqpqi`1,qi`1q
`K,

2. each sub-path qi`1 Ñ
w 1 qi`1 for w 1 P tw1,w2, . . . ,wlu has shape Sw 1 such that

Sw „ S, and for each proper looping prefix w2 of w 1 (i.e. such that |w2| ň |w 1| and
qi`1 Ñ

w2 qi`1), Sw2 Ĺ S, and

3. the final sub-path wf is also a self-loop: wf P Jrpiqpqi`1,qi`1q
˚K, but has a strictly

smaller shape Sf Ĺ S. (Note that the final sub-path wf is possibly even empty.)

We call this split w “ w1w2 ¨ ¨ ¨wlwf the S-decomposition of w. See figure 5.5.

Summarizing the segments of the S-decomposition. We will now construct expression
vectors AS 1 which summarize these minimal sub-pathsw 1 P tw1,w2, . . . ,wlu. For each shape
S 1 „ S, let LfirstpS 1q be the set of non-empty strings w 1 P Jrpiqpqi`1,qi`1q

`K such that all
proper prefixes wpre of w 1 have shape Spre Ĺ S 1. Observe that for each w 1 P tw1,w2, . . . ,wlu,
w 1 P LfirstpSw 1q. The string w 1 can itself be unambiguously written as w 1 “ wprewsuff, where
wsuff P r

piqpqi`1,qi`1q is a single iteration of the qi`1 Ñ qi`1 loop. If wpre has shape Spre,
and wsuff has shape Ssuff, then they are summarized by the expression vectors BSpre and

RpiqSsuffpqi`1,qi`1q respectively. We have already constructed both of these expression vectors
by the induction hypothesis. Therefore, we can define:

AS 1 “
ÿ

S1¨S2“S 1,S1ĹS 1

BS1 ¨R
piq
S2
pqi`1,qi`1q. (5.8.2)

By construction, we have:



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 81

Proposition 5.18. For each shape S 1 „ S, the expression vector AS 1 summarizes all paths in
LfirstpS

1q.

Short and long S-decompositions. Pick a small constant l0, and consider strings w such
that qi`1 Ñ

w qi`1 with shape S and with short S-decomposition w “ w1w2 ¨ ¨ ¨wlwf, i.e.
l ď l0. All such strings are easy to summarize: for each l P t1, 2, . . . , l0u, and for each shape
S 1 „ S, we define:

A1
S 1 “ AS 1 , and

Al`1
S 1 “

ÿ

S1¨S2“S 1

AiS1
¨AS2 , so that

AălS 1 “
l´1
ÿ

j“1

AjS 1 . (5.8.3)

This still leaves the problem of strings with arbitrarily long S-decompositions. The following
result, which is an immediate consequence of proposition 5.17, is an important first step.
Recall that we defined a stable shape S as one with the property that if uÑS v then vÑS v.

Proposition 5.19. Let there be k registers in the SSTM. Pick a string w P Jrpiqpqi`1,qi`1q
`K

with shape S. Let w “ w1w2 ¨ ¨ ¨wlwf be its S-decomposition. Then for each sequence of k
consecutive segments, w 1 “ wjwj`1 ¨ ¨ ¨wj`k´1, Sw 1 is stable.

There are two main consequences of this result:

1. For non-stable shapes, l ă k, and they are therefore easy to summarize.

2. If the S-decomposition is divided into “k-segments”, each composed of k consecutive
segments, w “ pw1w2 ¨ ¨ ¨wkq ¨ pwk`1wk`2 ¨ ¨ ¨w2kq ¨ ¨ ¨ pwl 1qwf, then each k-segment

ws,m “ wmk`1wmk`2 ¨ ¨ ¨wpm`1qk

attains a stable shape. See figure 5.6.

(a) Every non-support register u R SupppSq is reset while processing ws,m. The
ultimate value of u is therefore a function of the suffix wl´k`1wl´k`2 ¨ ¨ ¨wlwf.

(b) If v P SupppSq, then every incoming register while processing ws,m was reset
while processing the previous segment ws,m´1. The value appended to v while
processing ws,m is therefore entirely determined by ws,m´1 ¨ws,m.
We will write an expression f which maps ws,m´1ws,m to the value appended to
v after processing ws,m. The expression of interest will then be chainpf, rq, with
r “

ř

S 1„S DompA
k
S 1q.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 82

qi`1 qi`1 qi`1

u u u

v v v

w w

Ss,m´1 „ S, and is stable

ws,m´1 “ wpm´1qk`1wpm´1qk`2
¨ ¨ ¨wmk

Ss,m „ S, and is stable

ws,m “ wmk`1wmk`2 ¨ ¨ ¨wpm`1qk

Figure 5.6: Analyzing data flows while iterating k-segments. The entire path qi`1 Ñ
w qi`1

has shape S, which is stable. The S-decomposition w “ w1w2 ¨ ¨ ¨wlwf is divided into k-
segments ws,m “ wmk`1wmk`2 ¨ ¨ ¨wpm`1qk of k consecutive iterations. In this figure, we
show two consecutive k-segments, ws,m´1ws,m. By proposition 5.19, each k-segment itself
has a stable shape.

5.9 Constructing B`S

Recall that the expression vector B`S should summarize non-empty strings w of the form
rpiqpqi`1,qi`1q

` and with shape S. We currently have two induction hypotheses:

1. BS 1 is known for all strictly smaller shapes, S 1 Ĺ S, and

2. RpiqS 1 pq,q
1q is known for each shape S 1 and each pair of states q, q 1.

For each support-equal shape S 1 „ S, we have constructed the expression vector AS 1 in
equation 5.8.2: AS 1 summarizes minimal strings w such that (a) qi`1 Ñ

w qi`1, (b) Sw “ S 1,
and (c) for all looping prefixes w 1 of w, Sw 1 Ĺ S. In this section, we will construct B`S .

Non-stable shapes. Let S be a non-stable shape, and w P Jrpiqpqi`1,qi`1q
˚K be a loop with

shape S. Let the S-decomposition of w be w “ w1w2 ¨ ¨ ¨wlwf. By proposition 5.17, l ă k,
where k is the number of registers in the machine. AďkS from equation 5.8.3 is therefore
sufficient to solve this case:

B`S “
ÿ

tAăkS1
¨ BS2 | S1 ¨ S2 “ S,S1 „ S,S2 Ĺ Su. (5.9.1)

S is stable, and Spvq “ ε. Informally, this is the case when v is reset in S, and therefore also
reset during each minimal sub-path w which is support-equal to S. Therefore, the final value
of the register v is entirely determined by the substring wl´k`1wl´k`2 ¨ ¨ ¨wl ¨wf. Register



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 83

u in figure 5.6 is a visualization of this situation. Define:

H “
ÿ

tAă2k
S1

¨ BS2 | S1 ¨ S2 “ S,S1 „ S,S2 Ĺ Su (for “short” strings w),

f “
ÿ

tpAkS1
¨ BS2qv,1 | S1 „ S,S2 Ĺ Su, and

r “ DompAkSq ¨ p
ÿ

S 1„S

DompAS 1qq˚, so that

B`S,v,1 “ Hv,1 else shiftpr, fq. (5.9.2)

By proposition 5.16, shifting by DompAkSq ensures that the resulting path has shape S. It can
be verified that the sub-expressions of the else have disjoint domains (l ă 2k and l ě 2k
respectively), and mutually exhaust the cases when the total path w has shape S. Consistency
follows.

Internal patches: Spvq ‰ ε, but 1 ă m ă |Spvq| ` 1. This corresponds to the case when m
is an internal patch of Spvq. Consider the update expressions

x :“ xaby,
y :“ b,

and

x :“ axbyc,
y :“ b.

Both updates have the same shape tx ÞÑ xy,y ÞÑ εu. Concatenating them also yields an
update expression with the same shape:

x :“ axabybbc,
y :“ b.

Note that the internal patch sx,2 “ ab, and observe that its value has been fixed by the first
update, because once the register x and y have been combined in S, any changes to the
register value can only be at the beginning or at the end of the string. It follows that the value
of m-th patch in the final update expression for v is determined entirely by w1w2 ¨ ¨ ¨wk. We
can therefore write:

H “
ÿ

tAăkS1
¨ BS2 | S1 ¨ S2 “ S,S1 „ S,S2 Ĺ Su, and

r “ p
ÿ

S 1„S

DompAS 1qq˚ ¨
ÿ

S 1ĹS

DompBS 1q, so that

B`S,v,m “ Hv,m else shiftpAkS,v,m, rq. (5.9.3)

The expression is consistent because the sub-expressions have disjoint domains, and they
mutually exhaust all cases where the total path has shape S.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 84

ws,0 ws,1 ws,2 ws,3 ws,4 wr wf

pre main main main post

Figure 5.7: Summarizing the extremal patches: S is stable, Spvq ‰ ε, and m “ |Spvq| `

1. We are summarizing strings with at least 3 segments, so in the S-decomposition w “

w1w2 ¨ ¨ ¨wlwf, l ě 3k. We write three expressions pre, main, and post, which compute the
value appended to v during each of the iterations of the S-decomposition.

External patches: Spvq ‰ ε, and m “ 1 or m “ |Spvq| ` 1. This is the case when m is
either the first or the last patch in Spvq. As discussed in figure 5.6, the value appended to
v while processing ws,m is determined by ws,m´1ws,m. We will define B`S,v,m for the case
when m “ |Spvq| ` 1. The case for m “ 1 is symmetric. We will temporarily assume that the
S-decomposition is long, with l ě 3k. See figure 5.7.

1. In the first two segments w1w2 ¨ ¨ ¨wk and wk`1wk`2 ¨ ¨ ¨w2k of the S-decomposition,
the value appended to the end of register v is given by:

pre “ shiftpA2k
S,v,m, rq, where (5.9.4)

r “ p
ÿ

S 1„S

DompAS 1qq` ¨
ÿ

S 1ĹS

DompBS 1q.

2. Let the segments be ws,0, ws,1, . . . , ws,l 1 , leaving a suffix wrwf, where Swr „ S (but
with an S-decomposition strictly less than k iterations) and Swf Ĺ S. We now calculate
the value appended to v during each segment ws,2,ws,3, . . . ,ws,l 1 . Pick a pair of stable
shapes Sp,Sc „ S, and say that the segments ws,m´1 and ws,m in figure 5.6 have
shapes Sp and Sc respectively. We will now write an expression for the value appended
to v at the end of ws,m. Define:

Vc “ shiftpDompAkSpq,A
k
Sc
q, and

Vp “ shiftpAkSp ,DompA
k
Sc
qq.

Consider the sequence σ of expressions and registers occurring after v in Vc,v, and
substitute the expression Vp,u for every register u in σ. View expression concatenation
as the DReX operator combine, and define fpSp,Scq as the expression which results.
The expression main computes the value appended to v after processing each segment



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 85

ws,2, ws,3, . . .ws,l 1:

main “ shiftpDompAkSq, chainpf, rq, rpostq, where (5.9.5)

f “
ÿ

tfpSp,Scq | Sp,Sc „ S, both stableu,

r “
ÿ

tDompAkS 1q | S
1 „ S and stableu, and

rpost “ pε`
ÿ

S 1„S

DompAăkS 1 qq ¨
ÿ

S 1ĹS

DompBS 1q.

3. In figure 5.7, wr is the string left over when the S-decomposition is grouped into
segments of k iterations each. This is an empty string exactly when l is a multiple of k.
Corresponding to the two cases where it is empty and not-empty, we write expressions
f2 and f3. Pick a shape Sl 1 „ S and Sf Ĺ S. Define:

U2
f “ shiftpDompAkSl 1 q,BSfq, and

U2
l 1 “ shiftpAkSl 1 ,DompBSfqq.

Consider the sequence σ of expressions and registers which follow v in U2
f,v, and replace

every occurrence of a register u with U2
l 1,u. View concatenation as the DReX operation

combine, and define f2pSl 1 ,Sfq as the expression which results. Let:

f2 “
ÿ

tf2pSl 1 ,Sfq | Sl 1 „ S,Sf Ĺ Su.

Similarly, pick three shapes Sl 1 ,Sr „ S, and Sf Ĺ S. Define:

U3
f “ shiftpDompAkSl 1 q,A

ăk
Sr
¨ BSfq, and

U3
l 1 “ shiftpAkSl 1 ,DompA

ăk
Sr
¨ BSfqq.

Consider the sequence σ of expressions and registers which follow v in U3
f,v, and replace

every occurrence of a register u with U3
l 1,u. View concatenation as the DReX operation

combine, and define f3pSl 1 ,Sr,Sfq as the expression which results. Let:

f3 “
ÿ

tf3pSl 1 ,Sr,Sfq | Sl 1 ,Sr „ S,Sf Ĺ Su.

The value appended to the end of v by wrwf is then given by:

post “ shiftpDompA2k
S q ¨

ÿ

S 1„S

DompAkS 1q
˚, fq, where (5.9.6)

f “ f2 else f3.

Finally, we can write:

H “
ÿ

tAă3k
S1

¨ BS2 | S1 ¨ S2 “ S,S1 „ S,S2 Ĺ Su, so that

B`S,v,m “ Hv,m else combineppre,main, postq. (5.9.7)

By construction, we have:

Proposition 5.20. B`S summarizes all strings w P Jrpiqpqi`1,qi`1q
`K and with shape S.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 86

5.10 Completing the Proof: Constructing Rpi`1q
S pq,q 1q

We just constructed B`S , and by equations 5.8.1, 5.5.2, and 5.5.1, we have completed the
construction of Rpi`1q

S pq,q 1q. It can be verified that:

Lemma 5.21. For all i P t0, 1, 2, . . . ,n ´ 1u, shape S and states q,q 1 P Q, Rpi`1q
S pq,q 1q

summarizes all paths matching rpi`1qpq,q 1q and whose shape is S.

This completes the proof of part 1 of theorem 5.1.

Recap. In this chapter so far, we have established that consistent DReX expressions can
express all regular string transformations. The principal difficulty introduced by SSTs is that
a single input symbol may influence non-contiguous substrings in the output in complicated
ways, such as in the function shuffle from example 2.6. The solution was to use the chained
sum operation so that symbols of the input could be repeatedly scanned to produce different
parts of the output.

The translation from SSTs to function expressions involved an outer induction where, in
step i, we summarized all strings w from q to q 1 while only passing through intermediate
states tq1,q2, . . . ,qiu. We associated paths through the SST with their shapes, indicating the
pattern of data flows. We then investigated the possible shapes of sub-paths of a given path,
and proved that the notion of shape ordering Ď captured this idea. This allowed us to set up
a nested inductive construction, where we summarized strings with the shape S, assuming
that the summaries for all strings w 1 with shape S 1 Ĺ S is known. The copylessness of SSTs is
also essential in this construction, because it forces the space of shapes to be finite.

5.11 The Case of SSTTs

We will now consider part 2 of theorem 5.1, i.e. the expressive completeness of QREs for
term transducers. Since the proof very similar to the construction for string transducers, we
will only highlight the differences.

5.11.1 Shapes and expression vectors

Recall the coffee shop machine from figure 3.4a. In figure 5.8, we present the summary of
the string “SMCCM” starting from the state q S. In the previous case, of string-to-string
transducers, a shape was a copyless function S : V Ñ V˚.

In figure 5.8c, we summarize all paths of the form “SMCnM”: they all share the same
shape tx ÞÑ tx, zu,y ÞÑ H, z ÞÑ Hu, and are summarized by the expression vector A:

Ax “ splitpS ¨M ÞÑ x` z, iterpC ÞÑ 2,`q,M ÞÑ 0,`q,
Ay “ S ¨M ¨ C˚ ¨M ÞÑ 0, and
Az “ S ¨M ¨ C˚ ¨M ÞÑ 0.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 87

q S qS q S q S q S q S
S M C C M

x

y

z

x

y

z

x` z

0

0

x` z

2

1

x` z

4

1

x` z` 4

0

0
(a)

q S q S
S ¨M ¨ C ¨ C ¨M

x

y

z

x` z` 4

0

0
(b)

q S q S
S ¨M ¨ Cn ¨M

x

y

z

x` z` 2n

0

0
(c)

Figure 5.8: Summarizing paths through SSTTs. We are referring to the machineM3 from
figure 3.4a.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 88

The string summary represents the final value of each register in terms of the initial
register valuation. In the case of term transducers, a shape S : V Ñ UpdSchemes is a function
mapping each register v to an “update scheme” Spvq. The update scheme Spvq is a set of
registers, where each register u P Spvq is associated with a set of parameter substitutions
pp,Upq, where p is a parameter and Up is itself an update scheme, indicating that during
the execution of the path σ, the parameter p of the initial value of v has been substituted for
some update scheme Up:

U ::“ tv1rp11 :“ U11,p12 :“ U12, . . . ,p1l :“ U1ls,
v2rp21 :“ U21,p22 :“ U22, . . .s, . . .u

(5.11.1)

We will only be interested in single-use update schemes and single-use shapes: note that
there are only a finite number of single-use shapes over a finite set of registers V.

Let S be a shape over the registers of an SSTTM. An expression vector A with shape S is
a map from each register v and update scheme U occurring in Spvq to a consistent well-typed,
single-use QRE, Av,U.

Let L Ď Σ˚ be a set of paths starting from the state qwith the same shape S. A summarizes
L if: (a) for each w P L, JAvKpwq “ µpq,a, vq, and (b) for all v, DompAvq “ L.

5.11.2 Ordering the registers and shapes

One subtle difficulty in the case of term transducers is that proposition 5.13 does not imme-
diately carry over: since the registers are typed, it is not always feasible to respect a global
ordering by renaming registers as we did in the previous construction.

We instead locally associate each state q with a total order over the registers ĺq. A total
order ĺq over a finite set of registers V permits the natural definition of “register rank”:
rankq : V Ñ t1, 2, . . . ,ku such that rankqpuq ď rankqpvq iff u ĺq v. A transition qÑa q 1 is
upward-flowing if whenever µpq,a,uq contains an occurrence of v, rankq 1puq ď rankqpvq.
It can be verified that if each transition of a path σ “ qÑw q 1 is upward-flowing, then the
whole path σ is itself upward-flowing. With this finer notion of the register ordering, an
equivalent of proposition 5.13 can be proved:

Proposition 5.22. For every SSTTM, there is an equivalent upward-flowing SSTTM 1.

Next, while our previous definitions of the ordering over shapes Ď and support-equality „
in section 5.7 were quite general, we were eventually only concerned with iterating loops at a
single state qi`1. In the present setting, we can therefore restrict our attention to a per-state
ordering over shapes Ăq, Ďq and a per-state idea of support-equality „q. Apart from only
ordering shapes of self-loops at a single state q, both definitions are otherwise identical to
those in definition 5.14. We now have the following analogues of propositions 5.15, 5.16
and 5.17:

Proposition 5.23. Let σ “ qÑw q be a looping path through the SSTTM with shape S, and
σ 1 be a sub-loop of σ with shape S 1. Then S 1 Ďq S.



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 89

Proposition 5.24. Let there be k registers in the SSTTM. Choose k`1 stringsw1,w2, . . . ,wk,w 1 P
Σ˚ and a loop σ “ q Ñw1 q Ñw2 q Ñw3 ¨ ¨ ¨ Ñwk q Ñw

1

q through the SST such that for
each i P t1, 2, . . . ,ku, the shape Si of the sub-loop wi is support-equal to the shape S of the
entire loop σ. Then the prefix sub-loop qÑw1w2¨¨¨wk q also has shape S.

As before, a shape S is stable if whenever uÑ v occurs in S, then vÑ v also occurs in S.

Proposition 5.25. Let there be k registers in the SSTT M. Let σ “ q Ñw1 q Ñw2 q Ñw3

¨ ¨ ¨ Ñwk q be a loop through the SSTT such that for each j P t1, 2, . . . ,ku, the shape Sj of the
sub-loop wj is support-equal to the shape S of the entire loop σ. Then the shape S is stable.

5.11.3 Computing Rpi`1q
S pq,q 1q

The construction of Rpi`1q
S pq,q 1q for term transducers is similar to that for SSTs:

Rpi`1q
S pq,q 1q “ RpiqS pq,q

1q else CSpq,q 1q, where

CSpq,q 1q “
ÿ

tRpiqS1
pq,qi`1q ¨ BS2 ¨R

piq
S3
pqi`1,q 1q | S1 ¨ S2 ¨ S3 “ Su,

BS “ BεS else B`S , and

BεS,v “

#

ε ÞÑ v if S is the identity shape, and
bot otherwise.

As before, BεS summarizes the empty path qi`1 Ñ
ε qi`1 with shape S, and B`S summarizes

all non-empty paths qi`1 Ñ
w qi`1 with shape S. We now focus on the construction of B`S .

We proceed by induction on the pre-order Ďq`1. We already have the following expressions:

1. RpiqS 1 pq,q
1q for each shape S 1 and each pair of states q, q 1, and

2. BS 1 for all shapes S 1 Ĺq S.

We construct the S-decomposition of self-loops qi`1 Ñ
w qi`1 exactly as before, and

consider k-segments. The construction of B`S for non-stable shapes is identical to that in
equation 5.9.1. For stable shapes, we recall the observation that for every register u such
that uÑ v along a k-segment, u must have been reset during the previous k-segment, and
so the value flowing into v while processing ws,m is entirely determined by ws,m´1ws,m.
We can use multi-expression iteration to capture this behavior: we include an expression
eu which computes the value of u while processing each k-segment, and the expression ev
which computes v incorporates the value of eu. This argument can be formalized to obtain
B`S and hence RpSqi`1pq,q

1q for stable shapes S.

5.12 Notes

In the original construction [19], instead of just defining upward-flowing shapes, we had a
more powerful notion of normalized shapes. Approximately speaking, a normalized shape was



CHAPTER 5. CONVERTING TRANSDUCERS INTO FUNCTION EXPRESSIONS 90

both upward-flowing and stable. We had claimed that the composition of normalized shapes
is also normalized: as pointed out by Dana Fisman, this statement was false. Reworking the
proof with just upward-flowing shapes requires a more involved statement in proposition 5.16,
and more careful analysis in section 5.8.

In the original proof, we had also mistakenly claimed that the ordering relation between
shapes was a partial order: Ď is not anti-symmetric (there are many unequal shapes which
are support-equal to each other), and so it is only a partial order.

Arjun Radhakrishna recently pointed out that the S-decomposition of a path is very similar
to the idea of factorization forests [83, 30]. Informally, in our setting, the theorem states
that every homomorphism Σ˚ Ñ Shapes admits factorization forests of bounded height [73].
It appears that the deterministic version of the theorem is what is relevant to our case: it is
an interesting direction of future work to flesh out this connection and attempt to simplify
sections 5.6, 5.7 and 5.8.



Part II

Evaluation Algorithms

91



Chapter 6

A Fast Evaluation Algorithm for
Consistent Expressions

In this part of the thesis, we will study the problem of evaluating function expressions.
In chapter 4, we presented an algorithm to translate function expressions into equivalent
transducers. Because transducers are an operational model, we have, in a sense, already
solved the evaluation problem. However, the product construction is unavoidable for the
expressions oppe, fq and combinepe, fq, and therefore the complexity of that approach is
exponential in the expression size |e|.

We will now present a fast evaluation algorithm for QREs and DReX expressions. The
algorithm will make one left-to-right pass over the input streamw “ w1w2 ¨ ¨ ¨wn, processing
each symbol wi in Op|e|2q time and producing a result on the stream read so far, w1w2 ¨ ¨ ¨wi.

The algorithms to evaluate DReX and QREs are both very similar, except for the case
of the chained sum (lemma 6.12). For concreteness, we will only present the construction
for the relevant QREs. The algorithm can be thought of as an implicit lazy construction of
the previous SSTT, leading to asymptotic improvements in evaluation performance. Kostas
Mamouras has made several insightful observations regarding this algorithm: as a result, the
presentation here is much simpler than our earlier descriptions [14, 17], and is similar to the
form in which it is presented in [20].

6.1 Formal Statement of Result

slpe,wq and stpe,wq. Consider the DReX expression left-iterptrue ÞÑ xq which encodes the
string reversal function. Given an input string w, the output

Jleft-iterptrue ÞÑ xqKpwq “ reversepwq

has the same length as the input, and cannot be emitted until w has been completely read.
Because the algorithm will need to maintain the intermediate result in memory, there is an
Ωp|w|q lower-bound on the memory requirements of a one-pass streaming evaluator.

92



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 93

Therefore, to accurately measure the memory usage of the evaluation algorithm, we
introduce the value slpe,wq1 to bound the length of the longest intermediate result produced
during the computation of JeKpwq. This quantity is defined as:

slpe,wq “ maxt|Je 1Kpw 1q| | e 1 sub-expression of e, and w 1 substring of wu. (6.1.1)

The DReX evaluation algorithm will require Op|e|slpe,wqq space for computation. Separately,
purely from an analysis of the running time of the algorithm, it will follow that the memory
footprint is also bounded by Op|e|2|w|q.

We also need to make similar considerations for the evaluation of QREs. Given a QRE e,
and an input stream w, stpe,wq is an upper-bound on the size of the largest intermediate
term produced during the evaluation of JeKpwq, and is defined exactly as slpe,wq in the case
for DReX:

stpe,wq “ maxt|Je 1Kpw 1q| | e 1 sub-expression of e, and w 1 substring of wu. (6.1.2)

The QRE evaluation procedure will require Op|e|stpe,wqq space. It is easy to show that
stpe,wq “ Op|e||w|q, and therefore, the evaluation algorithm always requires no more than
Op|e|2|w|q memory.

Having defined slpe,wq and stpe,wq, we can state the main result of this chapter:

Theorem 6.1. 1. Let e be a consistent DReX expression, and w “ w1w2 ¨ ¨ ¨wn be a se-
quence of symbols. There is an algorithm which makes one pass over w, and processes
each symbol wi in Op|e|2q time. During this processing, it will also output the value of
JeKpw1w2 ¨ ¨ ¨wiq, if it is defined. While reading the first i symbols, the algorithm will
consume less than Op|e|slpe,w1w2 ¨ ¨ ¨wiqq memory.

2. Let e be a consistent, well-typed, single-use QRE, and w “ w1w2 ¨ ¨ ¨wn be a sequence
of input symbols. There is an algorithm which makes one pass over w, and processes
each symbol wi in Op|e|2q time. During this processing, it will also output the value of
JeKpw1w2 ¨ ¨ ¨wiq, if it is defined. While reading the first i symbols, the algorithm will
consume less than Op|e|stpe,w1w2 ¨ ¨ ¨wiqq memory.

From the running time of the algorithms, it also follows that the memory usage is never
more than Op|e|2|w|q.

A brief comment on the computational model. The input stream is read using a left-to-
right read-only head, and the working memory is organized as a RAM. With the memory
requirement set at Op|e|2|w|q, one potential way for a one-pass evaluation algorithm to
cheat is to copy the entire input string into memory, and then perform arbitrarily many
passes over the representation of the string stored in memory. However, such pathological
algorithms would fail to satisfy theorem 6.1: After reading each symbol wi of the input
stream, there is a hard Op|e|2q bound on the time within which the algorithm must both
produce JeKpw1w2 ¨ ¨ ¨wiq and become ready to accept the next symbol of the input stream.

1The subscript “l” in slpe,wq is intended to evoke the idea of “string length”



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 94

q0start q10 A1 q1f q20 A2 q2f qf
ε ε ε

Figure 6.1: The traditional regular expression-to-NFA construction, Ar1¨r2 , for the case of
r1 ¨ r2. The states q10 and q1f are the initial and accepting states of A1, and q20 and q2f are
the initial and accepting states of A2 respectively.

This time bound is independent of the number of symbols, i, of the input stream read so
far, and insufficient to make even one full pass over any potential copies of the input stream
stored in memory.

Also notice that the memory usage of the evaluation algorithm is actually output sensitive:
if slpe,wq (resp. stpe,wq) is op|e||w|q (emphasis on the little-oh), then there is insufficient
memory to store a copy of w, and this cuts off any path to subvert the claims of this chapter.

Finally, we note the structure of the strings produced by the DReX evaluator. We encode
strings as follows:

str ::“ γ | concatpstr1, str2q, (6.1.3)

where γ P Γ˚ is a string encoded in the traditional list-of-characters representation. We name
this representation a “lazy” string. In contrast to the traditional representation, lazy strings
offer constant time concatenation, and this is an important assumption we will make while
establishing the time complexity of the evaluation routine. Observe that lazy strings can be
converted back into character arrays in linear time.

6.2 Motivation

Parsing regular expressions. We recall the traditional construction of NFAs from regular
expressions, and specifically the case of concatenation, r “ r1 ¨ r2, in figure 6.1. After
constructing this NFA, the process to match an input string w against a regular expression r is
like playing a board game: A token ‚ (pronounced “bullet”) is first inserted into the machine
in state q0. After reading each input character a, for each token-containing state q, a new
token is placed in every state q 1 such that q Ña q 1, and the original token is taken away
from q. Ultimately, w is accepted iff there is a token in some accepting state qf.

The process we just described typically only returns a boolean value indicating whether
the string matches the pattern under consideration. It can, however, be extended to return
the parse tree of the string, and this more involved problem is conceptually closer to the
problem of evaluating QREs.

Each token represents a potential (and still incomplete) parse tree of the entire string w,
as shown in figure 6.2. The edges of the NFA can then be labelled with actions to update the
incomplete parse trees corresponding to each token.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 95

Recall that we inductively build accepting NFAs from regular expressions: Let r be a
sub-expression of a larger regular expression r 1, and consider the NFA A, corresponding to
r, constructed as a component of the NFA A 1 which accepts r 1. Let the entire input string
be w 1 “ wpre ¨w ¨wpost, where w P JrK. Say also that processing the prefix wpre results in a
token ‚ being dropped in the initial state q0,A of the component machine A:

q0,A 1 Ñwpre q0,A.

Finally, say that processing w by A results in the input token ‚ moving to some accepting
state qf,A:

‚@q0,A Ñ
w ‚ 1@qf,A.

Recall that the input token ‚ contains the partial parse tree for the prefix wpre, and that we
resolved to annotate the transitions of the NFA with actions to update these partial parse
trees. Here ‚ 1 is the modified token reaching qf,A. Therefore, to compute parse trees in
addition to the boolean accept / reject value, the idea is to include the parse tree tw of w
according to the sub-expression r as part of the output token ‚ 1:

‚ 1 “ ptw, ‚q.

When ‚ 1 re-enters the outer machine A 1, we can perform appropriate actions to incorporate
tw into the larger parse tree under construction.

More concretely, a token (which represents an incomplete parse tree) is encoded as a tuple
pt1, t2, . . . , tkq of fully-specified parse trees for various sub-expressions of the complete regular
expression. Consider, for example, the partial tree of figure 6.2b. This can be represented by
the tuple pp˚bbq, p˚aaaqq, indicating the maximal fully-specified subtrees of the tree under
consideration.

In Ar1¨r2 from figure 6.1, we label the q0 Ñ q10 and q1f Ñ q20 edges with the empty
action. The incoming token ‚ is therefore passed unchanged to the state q10 of A1. On
matching a prefixwpre of the input, the token reaching state q1f is of the form pτpre, ‚q, where
τpre is a parse tree of wpre for the sub-expression r1. This token is then placed in the starting
state q20 of A2. On reading a suffix wpost which matches r2, the token reaching q2f is of the
form pτpost, τpre, ‚q, where τpost is a parse tree of wpost. The entire string w “ wprewpost can
then be described by the parse tree τ “ concatpτpre, τpostq. It is then sufficient to modify the
original automaton Ar1¨r2 as shown in figure 6.3.

Evaluating QREs. Themain problemwith this approach is the product construction required
for oppe, fq, as repeated invocations of the product construction will yield a machine whose
size is exponential in the given QRE. Given a consistent, single-use QRE e, we therefore
instead construct an “evaluator” M which computes JeKpwq by lazily traversing the state
space. M is a stateful object with two actions:

1. Mpstart, ‚q, analogous to the placement of a token in the start state of the NFA, and



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 96

start

‚1 ‚2

‚3 ‚4 ‚5

a
ε

b

ε a

ε

b

ε b

(a)

¨

˚

a a a

`l

¨

˚

b b

?

(b)

Figure 6.2: Visualizing incomplete parse trees. The regular expression of interest is r “ r1 ¨r2,
where r1 “ a˚ and r2 “ b˚a ` b˚b. The string read so far is w “ a3b2. We show the
incomplete parse tree corresponding to the token ‚2 in figure 6.2b, where incomplete nodes
are circled.

q0start q10 A1 q1f q20 A2 q2f qf
ε ε ε

Emit ‚ Emit ‚ Let ‚ “ ptpost, tpre, ‚ 1q.
Define tw “ concatptpre, tpostq.
Emit ptw, ‚ 1q.

Figure 6.3: Extending the NFA Ar1¨r2 of figure 6.1 with actions to construct parse trees. On
all three marked transitions, ‚ refers to the incoming token. The q0 Ñ q10 and q1f Ñ q20
transitions simply emit the incoming token unchanged. The final q2f Ñ qf transition
concatenates the parse trees corresponding to r1 and r2 to obtain the parse tree for r1 ¨ r2.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 97

M

1 2 i j n

e defined

e defined f defined

Me

Mf

‚

‚ ptei, ‚q

ptei, ‚q

ptej, ‚q

ptej, ‚q

ptfj, tej, ‚q

pt, ‚q

Figure 6.4: Example run of the evaluator M for splitpe Ñp fq over a stream w. The sub-
expression e is defined for two prefixesw1,w2, . . . ,wi andw1,w2, . . . ,wj of the input stream,
and f is only defined for wj`1, . . . ,wn. The token at the top-left corner initiates the causal
sequence of starts and results. At the end of the string, when the parent evaluatorM receives
the result ptfj, tej, ‚q fromMf, it computes t “ tfrp :“ tes, and itself produces the result
pt, ‚q.

2. Mpaq, for each a P Σ, corresponding to the machine reading the symbol a from the
input stream.

In response to each action,M may optionally produce a result of the form pte, ‚q, where ‚ is
some token introduced in the past, and te is the result of e on all input characters received
after receiving ‚.

We illustrate the input-output behavior of the evaluatorM for splitpeÑp fq in figure 6.4.
M maintains two sub-evaluators,Me andMf, corresponding to each sub-expression. M is
given the input sequence pstart, ‚q,w1,w2, . . . ,wn. The first sub-expression e is defined on
two prefixes of the input:

JeKpw1w2 ¨ ¨ ¨wiq “ tei, and
JeKpw1w2 ¨ ¨ ¨wjq “ tej.

The second sub-expression f is defined on the suffix wj`1wj`2 ¨ ¨ ¨wn:

JfKpwj`1wj`2 ¨ ¨ ¨wnq “ tfj.

Similar to the NFA of figure 6.1,Me is given the input sequence: pstart, ‚q,w1,w2, . . . ,wn,
corresponding to a token being injected in the start state at the beginning of the string. Me

responds by declaring ptei, ‚q and ptej, ‚q after reading wi and wj respectively. In turn,Mf is
given the input sequence w1,w2, . . . ,wi, pstart, ptei, ‚qq,wi`1,wi`2, . . . ,wj, pstart, ptej, ‚qq,



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 98

Algorithm 6.1MsplitpeÑpfq.

1. Initialize sub-evaluatorsMe andMf for e and f respectively.

2. On receiving pstart, ‚q, invoke re ÐMepstart, ‚q, and let rf “ none.

3. On receiving a P Σ, invoke re ÐMepaq, and rf ÐMfpaq.

4. If re ‰ none, invoke r 1f ÐMfpstart, req. Otherwise, let r 1f “ none.

5. Assert rf “ none_ r 1f “ none. At least one of the calls toMf must have returned none.

6. If rf “ ptf, te, ‚q (for some te, tf, and ‚) and r 1f “ none, define t “ tfrp :“ tes. Output
pt, ‚q.

7. Otherwise, if rf “ none and r 1f “ ptf, te, ‚q (for some te, tf, ‚), define t “ tfrp :“ tes.
Output pt, ‚q.

8. Otherwise, if rf “ r 1f “ none, output none.

wj`1,wj`2, . . . ,wn. After reading wn, Mf produces the output ptfj, tej, ‚q. The parent
evaluatorM processes this result and itself produces the output pt, ‚q, where t “ tfjrp :“ tejs.
Algorithm 6.1 describes the final construction ofM. We will prove its correctness in section 6.4.

Bounding memory usage and collision-freedom. So far, we have ignored the memory
requirements of the constructed evaluators. In the regular expression matching problem,
tokens are values without structure. If two tokens reach the same state, either of them can
be silently dropped without affecting algorithmic correctness (see figure 6.5). There are
therefore at most Op|r|q tokens, independent of the string length.

When we generalize the problem to construct parse trees, tokens have internal structure:
each token is a tuple of parse trees, with total size at most Op|r||w|q. If we are only interested
in computing some parse tree, rather than finding all parse trees, we can still drop co-located
tokens. The total memory usage of parse tree computation is therefore Op|r|2|w|q.

We present the evaluatorMoppe,fq for oppe, fq in algorithm 6.2. The assertion on line 4
follows from the consistency requirements: e and f are mandated to have equal domains.
Observe that the assertion on line 5a is crucial to correctness: otherwise, if Me and Mf

report results corresponding to different threads, ‚ ‰ ‚ 1, there is no meaningful way to
combine them. However, the co-located-token-dropping optimization weakens the guarantee
to generate some, rather than all, parse trees, and is therefore erroneous.

Consider an input string w which results in the presence of co-located tokens, and a suffix
w 1 such that ww 1 is accepted by the machine. It follows that there exists a string ww 1 which
admits two different parse trees. Recall that consistency also requires the underlying regular
expressions to be unambiguous. For the top-level evaluator, it follows that there are never
any co-located tokens. During our inductive construction, we will require and ensure that the



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 99

q

‚

‚ 1

a

a

wpost

w 1post

Figure 6.5: Dropping co-located tokens while pattern matching. Once both tokens ‚ and ‚ 1

reach the same state q, they have equal destinies for all suffixes wpost, w 1post. Either token
can be safely dropped without sacrificing correctness. The number of live tokens is therefore
bounded by |r|.

Algorithm 6.2Moppe,fq.

1. Create sub-evaluatorsMe,Mf for e, f respectively.

2. On receiving pstart, ‚q, invoke re ÐMepstart, ‚q, and rf ÐMfpstart, ‚q.

3. On receiving a P Σ, invoke re ÐMepaq and rf ÐMfpaq.

4. Assert pre ‰ none^ rf ‰ noneq _ pre “ none^ rf “ noneq. Either both sub-evaluators
simultaneously report results, or neither does.

5. If re “ pte, ‚q and rf “ ptf, ‚ 1q (for some te, tf, ‚, and ‚ 1):

(a) Assert ‚ “ ‚ 1.

(b) Define t “ oppte, tfq and return pt, ‚q.

6. Otherwise, output none.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 100

input to each sub-evaluator be “collision-free”, i.e. that the process of inserting tokens into
the start state itself does not cause token co-location. The assertion on line 5a ofMoppe,fq
follows from this consideration, as token-dropping is unnecessary for collision-free inputs.

In section 6.4, we will constructM by induction on e. The most important part of the
correctness proof will be showing that if a parent evaluator receives a collision-free input
sequence, then the children will also receive collision-free input sequences. We will formally
define collision-freedom in section 6.3.

6.3 The Formal Specification of a Function Evaluator

Inputs, outputs, and threads. A token ‚ is a tuple of single-use terms:

‚ ::“ nil |pt, ‚ 1q (6.3.1)

We will occassionally treat a token as a stack, with the constructor pt, ‚ 1q serving as the push
operation and tail extraction serving as the pop operation. Tok is the space of all tokens. Let
e be a consistent, single-use QRE with input alphabet Σ and which outputs terms of type T .
Define Θ “ ptstartu ˆ Tokq Y Σ, and Ω “ pTermspTq ˆ Tokq Y tnoneu.

If the i-th symbol of γ P Θ˚ is a start, then we write ‚i for the token payload at this
location. We denote the standard string projection operation is given by πΣpγq:

πΣpεq “ ε, and (6.3.2)

πΣpa ¨ γq “

#

a ¨ πΣpγq if a P Σ, and
πΣpγq otherwise.

(6.3.3)

If the i-th symbol of γ P Θ˚ is a start, i.e. γ “ γpre, pstart, ‚iq,γpost, where |γpre| “ i´ 1, then
we call πΣpγpostq the thread beginning at index i, and denote it as thi.

Example 6.2. Consider γ “ a,b,b, pstart, ‚4q,b, pstart, ‚6q,a. There are two threads, begin-
ning at indices 4 and 6 respectively.

th4 “ πΣpb, pstart, ‚6q,aq “ ba, and
th6 “ πΣpaq “ a. 4

Collision freedom. An input sequence γ P Θ˚ is collision-free with respect to a QRE e
if for each prefix γ 1 of γ, for all distinct threads th 1i, th

1
j, of γ

1, and for all potential suffixes
wpost P Σ

˚, either JeKpth 1i ¨wpostq or JeKpth 1j ¨wpostq is undefined.

Example 6.3. Let e “ splitpa` ÞÑ a,b` ÞÑ bq. Informally, e maps strings w P a`b` to the
constant output string ab. Consider the input sequence:

γ1 “ pstart, ‚1q,a,a, pstart, ‚4q.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 101

γ

γ 1
pstart, ‚jq pstart, ‚iq

th 1i wpost

th 1j wpost

Figure 6.6: Collision-free evaluator inputs. The input stream γ is collision-free with respect
to e if for all prefixes γ 1, for all distinct threads i, j of γ 1, and for all suffixes wpost, either
JeKpth 1i ¨wpostq or JeKpth 1j ¨wpostq is undefined.

For the suffixwpost “ ab, both JeKpth1 ¨wpostq “ JeKpaa ¨abq and JeKpth4 ¨wpostq “ JeKpε ¨abq
are defined. The sequence γ1 is therefore not collision-free. Now consider the input sequence:

γ2 “ pstart, ‚1q,a,a,b, pstart, ‚5q.

If for some suffix wpost, JeKpth5 ¨ wpostq “ JeKpε ¨ wpostq is defined, then wpost has to begin
with an occurrence of the character a, and consequently, JeKpth1 ¨wpostq “ JeKpaab ¨wpostq is
undefined. It follows that γ2 is collision-free. 4

In figure 6.6, we graphically present the definition of collision-freedom. The following
elementary observations help to clarify this idea.

Proposition 6.4. 1. If Dompeq “ H, then every input sequence γ P Θ˚ is collision-free with
respect to e.

2. If e and e 1 are consistent QREs, Dompeq Ď Dompe 1q, and γ is collision-free with respect
to e 1, then γ is also collision-free with respect to e.

3. If γ is collision-free with respect to a consistent QRE e, and w P Σ˚ is a sequence of input
symbols, then γ ¨w is also collision-free with respect to e.

4. There exist consistent QREs e and e 1, and an input sequence γ such that Dompeq Ď
Dompe 1q, and γ is collision-free with respect to e, but not collision-free with respect to
e 1.

Proof of part 4. The witnesses e, e 1 and γ are as follows:

e “ splitpa` ÞÑ a,b` ÞÑ b, ¨q,
e 1 “ iterpa ÞÑ b else b ÞÑ aq, and
γ “ pstart, ‚1q,a,a,b, pstart, ‚5q.

Both e, e 1 are consistent, and Dompeq Ď Dompe 1q. In example 6.3, we saw that γ is collision-
free with respect to e, and it can be shown that γ is not collision-free with respect to e 1.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 102

Algorithm 6.3MϕÞÑλ.

1. Maintain a variable q P TokYtnoneu. Initialize q :“ none.

2. On receiving pstart, ‚q:

(a) Assert q “ none.

(b) Update q :“ ‚, and return none.

3. On receiving a P Σ:

(a) If q ‰ none and ϕpaq “ true,

i. define ‚ “ pλpaq,qq,
ii. update q :“ none, and
iii. return ‚.

(b) Otherwise, update q :“ none, and return none.

Function evaluators. A function evaluator is a stateful machine M which accepts a se-
quence of input signals γ P Θ˚ and after reading each signal, produces an output from
Ω (Recall from the beginning of this section that Θ “ ptstartu ˆ Tokq Y Σ, and Ω “

pTermspTq ˆ Tokq Y tnoneu). An evaluatorM computes a consistent QRE e if after reading
each collision-free input sequence γ, the machine outputs pt, ‚q iff there is a thread i such
that JeKpthiq “ t and ‚i “ ‚.

6.4 Inductive Evaluator Construction

In this section, we will inductively construct function evaluators for QREs and DReX expres-
sions. In the previous section, we declared that an evaluator computes an expression if
after reading each collision-free input sequence, it produces the appropriate result. In our
correctness proofs, we therefore assume that the incoming sequence is collision free. However,
before assuming that the values returned by child evaluators are meaningful, we first need to
establish that the input sequence supplied to the child by the parent is also collision-free.

Basic evaluators. We define the evaluatorsMϕÞÑλ,Mε ÞÑt, andMbot, for the basic QREs
ϕ ÞÑ λ, ε ÞÑ t, and bot in algorithms 6.3, 6.4, and 6.5 respectively.

Lemma 6.5. MϕÞÑλ computes ϕ ÞÑ λ.

Proof. In any collision-free input sequence γ with respect to ϕ ÞÑ λ, there cannot be con-
secutive start signals. Since every input character a P Σ clears the value of register q, the
assertion on line 2a always holds.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 103

Algorithm 6.4Mε ÞÑt.

1. On receiving pstart, ‚q, return pt, ‚q.

2. On receiving a P Σ, return none.

Algorithm 6.5Mbot.

1. On receiving pstart, ‚q, return none.

2. On receiving a P Σ, return none.

Say there is a thread i such that Jϕ ÞÑ λKpthiq “ ti is defined. From the semantics of the
combinator, it follows that |thi| “ 1, ϕpthiq “ true, and a start signal pstart, ‚iq immediately
preceded the last input character. It follows that the machine responds to the input sequence
with the expected result pλpγi`1q, ‚iq.

Conversely, say the machine responds with a result pt, ‚q. It must have been the case that
the last symbol γn P Σ and that before reading this symbol, q ‰ none. Since q is reset to
none after reading each character a P Σ, it follows that γn´1 must have been a start signal
pstart, ‚n´1q. It also follows that the produced output t “ λpγnq and that ‚ “ ‚n´1.

Lemma 6.6. Mε ÞÑt computes ε ÞÑ t.

Proof. First, any collision-free input sequence γ to ε ÞÑ t cannot have simultaneous start
signals. There are two cases of interest: (a) if the last symbol γn of the input sequence γ
was a start signal pstart, ‚nq, thenMε ÞÑt correctly responds with pt, ‚nq, and (b) otherwise,
if the last symbol γ “ a, where a P Σ, then for all threads i of γ, |thi| ě 1, and Jε ÞÑ tKpthiq
is undefined. Mε ÞÑt again produces the correct expected response of none.

Lemma 6.7. Mbot computes bot.

Proof. In this degenerate case, every input sequence is collision-free. The expression bot is
undefined for each thread thi of γ.Mbot always produces the response “none”, and correctness
follows.

Choice, function combination, and substitution. We presented the evaluator for oppe, fq
earlier in this chapter in algorithm 6.2: we will prove its correctness in lemma 6.9. The
evaluators for function combination oppe, fq and substitution erp :“ fs are very similar.
To obtain the evaluator for erp :“ fs, replace the definition t “ oppte, tfq in line 5b of
algorithm 6.2 with t “ terp :“ tfs. The full case of oppe1, e2, . . . , ekq can be obtained by
a straightforward generalization of the presented algorithm. We begin by presenting the
evaluator forMeelsef in algorithm 6.6.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 104

Algorithm 6.6Meelsef.

1. Create sub-evaluatorsMe andMf for e and f respectively.

2. On receiving pstart, ‚q, invoke re ÐMepstart, ‚q, and rf ÐMfpstart, ‚q.

3. On receiving a P Σ, invoke re ÐMepaq, and rf ÐMfpaq.

4. Assert re “ none_ rf “ none. Me andMf do not simultaneously report results.

5. If re ‰ none, return re. Otherwise, return rf.

Lemma 6.8. IfMe computes e andMf computes f, thenMeelsef computes e else f.

Proof. The input sequences γe, γf to bothMe andMf are equal to the original input sequence
γ: γe “ γf “ γ. For consistent QREs, Dompeq,Dompfq Ď Dompe else fq. From part 2 of
proposition 6.4, it follows that if the input to the parent evaluator is collision-free, then the
inputs to both sub-evaluators are also collision-free.

Say there is some thread i, such that JeelsefKpthiq “ ti. From the semantics we know that
either JeKpthiq “ ti, or JfKpthiq “ ti. In the first case, by the induction hypothesis, it follows
that Me returns the expected result pti, ‚iq, and that Meelsef also produces the expected
result at line 5. The second case is similar. We have shown that whenever Je else fKpthiq “ ti,
for some thread thi, the evaluatorMeelsef also produces the response pti, ‚iq.

Conversely, say the parent evaluator produces a result pt, ‚q after reading γ P Θ˚. Again,
by line 5, this result was causally preceded by a result from eitherMe orMf. Consider the
first case, i.e. that pt, ‚q was produced byMe. By the induction hypothesis, we can deduce
the existence of a thread i, such that t “ JeKpthiq and ‚ “ ‚i. For the same thread thi on
the parent evaluator, we know that t “ Je else fKpthiq. The second case (result produced by
Mf) is similar. We have therefore shown that wheneverMeelsef produces a result pti, ‚iq, it
is indeed the case that Je else fKpthiq “ ti. Correctness follows.

Lemma 6.9. IfMe computes e andMf computes f, thenMoppe,fq computes oppe, fq.

Proof. As in algorithm 6.6, the inputs γe, γf toMe andMf are equal to γ, the input sequence
given to the parent evaluator. The consistent expressions e, oppe, fq are a limiting case, with
Dompeq “ Dompoppe, fqq, of part 2 of proposition 6.4. If γ is collision-free with respect to
oppe, fq, we can now say that γe is also collision-free with respect to e, and similarly that γf
is collision-free with respect to f. We can now calculate:

D thread i, such that Joppe, fqKpthiq is defined
ðñ D thread i, such that both JeKpthiq is defined and JfKpthiq is defined
ðñMepγeq returns pte, ‚iq andMfpγfq returns ptf, ‚iq
ðñMpγq returns poppte, tfq, ‚iq.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 105

M therefore returns a result for exactly those input streams γ, and those thread indices i
such that Joppe, fqKpthiq is defined. It is straightforward to show that this result is indeed the
expected result.

Function concatenation. We have already seen the construction of MsplitpeÑpfq in algo-
rithm 6.1.MsplitpeÐqfq is symmetric: the definition t “ tfrp :“ tes on lines 6 and 7 is replaced
by t “ terq :“ tfs. We will now prove its correctness.

Lemma 6.10. IfMe computes e andMf computes f, thenMsplitpeÑpfq computes splitpeÑp fq.

Proof. Observe that γe “ γ, where γ is the input sequence fed to the parent evaluator, and
γe is the input to Me. We first show that γe is collision-free with respect to e. Assume
otherwise, so there are distinct threads i, j, and some suffix wpost, such that JeKpthiwpostq

and JeKpthjwpostq are both defined.
From the consistency rules, we know that Dompfq ‰ H. Say wf P Dompfq. Both threads i

and j of the parent evaluator are now defined for the suffix wpostwf:

JsplitpeÑp fqKpthiwpost ¨wfq, and
JsplitpeÑp fqKpthjwpost ¨wfq.

This contradicts the assumption that γ was collision-free with respect to splitpeÑp fq.
We will now show that the input sequence to Mf, γf is also collision-free. Assume

otherwise, so there exist distinct threads i, j, and an adversarial suffix wpost such that both
JfKpthfiwpostq and JfKpthfjwpostq are defined. Every start signal toMf, on line 4, is caused
by a result produced byMe. We have already established the collision-freedom of γe, and
we can therefore claim that this result was in turn caused by a start signal to the parent
evaluator. For each thread i, j of γf, let i 1 and j 1 be the corresponding threads entering the
parent evaluator. Now observe that both

JsplitpeÑp fqKpthi 1 ¨wpostq, and
JsplitpeÑp fqKpthj 1 ¨wpostq

are defined, again contradicting the assumption that the input to the parent evaluator, γ, was
collision-free with respect to splitpeÑp fq.

Now that we have proved the collision-freedom of the inputs provided to the children, it
is easy to show that the parent evaluator correctly computes splitpeÑp fq.

Function iteration. In algorithm 6.7, we present an evaluator for iterpe1 Ñ p1, e2 Ñ p2q.
An evaluator for the full combinator, iterpe1 Ñ p1, e2 Ñ p2, . . . , ek Ñ pkq, is similar, and
left-iteration iterpp1 Ð e1,p2 Ð e2, . . . ,pk Ð ekq is symmetric. The key idea is to maintain
the previous results from e1 and e2 at the top of the token stack fed to the child evaluator
M1. Every timeM1 reports a result (and by the consistency rules,M2 necessarily reports
simultaneously), the top of the token stack is updated appropriately, and the evaluators are
restarted.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 106

Algorithm 6.7Miterpe1Ñp1,e2Ñp2q.

1. Maintain sub-evaluatorsM1 andM2 for e1 and e2 respectively.

2. On receiving pstart, ‚q:

(a) Define ‚ 1 “ pp1,p2, ‚q. Invoke r1 ÐM1pstart, ‚ 1q and r2 ÐM2pstart, ‚q.

(b) Assert r1 “ r2 “ none.

(c) Return pp1, ‚q.

3. On receiving a P Σ:

(a) Invoke r1 ÐM1paq and r2 ÐM2paq.

(b) Assert pr1 ‰ none^ r2 ‰ noneq _ pr1 “ none^ r2 “ noneq.

(c) If r1 “ pt1, t1p, t2p, ‚q, and r2 “ pt2, ‚ 1q (for some terms t1, t2, t1p, t2p, and tokens
‚, ‚ 1),

i. Assert ‚ “ ‚ 1.
ii. Define t1n “ t1rp1 :“ t1p,p2 :“ t2ps.
iii. Invoke r1n ÐM1pstart, pt1n, t2, ‚qq, and r2 ÐM2pstart, ‚q.
iv. Assert r1n “ r2n “ none.
v. Return pt1n, ‚q.

(d) Otherwise, if r1 “ r2 “ none, return none.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 107

Lemma 6.11. If M1 computes e1 and M2 computes e2, then Miterpe1Ñp1,e2Ñp2q computes
iterpe1 Ñ p1, e2 Ñ p2q.

Proof sketch. We first argue that the input sequences fed to the childrenM1 andM2 are both
collision-free. Since Dompe1q “ Dompe2q, and the input sequences to the sub-evaluators, γ1
and γ2, agree on the location of starts and each character (the only difference is in the token
contents), the collision-freedom of γ2 with respect to e2 follows from the collision-freedom of
γ1 with respect to e1.

We will now show that γ1 is collision-free with respect to e1. Assume otherwise, and
let γ1 be the shortest prefix to the child which is not collision-free. Say that |γ1| “ n. The
sequence γ1 necessarily ends with a start signal, pstart, ‚1nq, and there is some other thread
i, and suffix wpost such that both Je1Kpth1i ¨wpostq and Je1Kpth1n ¨wpostq are defined. Since
th1n “ ε, the second term can be simplified: Je1Kpth1n ¨wpostq “ Je1Kpwpostq. The present
start signal, pstart, ‚1nq, toM1 was caused either byM1 itself reporting a result (line 3(c)iii),
or by a start signal from the external environment (line 2a).

Since γ1 is the shortest non-collision-free sequence, all prefixes are collision-free, and
M1 correctly reported results so far. If we follow the causal chain of start signals back to
the original external stimulus, we either (a) obtain two distinct threads, i 1 and n 1 of the
parent evaluator, or (b) reach the same parent thread i 1. The first case leads to the conclusion
that the parent function, iterpe1 Ñ p1, e2 Ñ p2q is simultaneously defined on both words
th 1iwpost and th 1nwpost, contradicting the assumption that the input to the parent evaluator
was collision-free. In the second case, let j be the first time the backward causal chains from
i and n converge. Consider the string wcex “ thjwpost: iterpe1 Ñ p1, e2 Ñ p2q admits two
different parse trees on wcex, contradicting the assumption that Dompe1q is unambiguously
iterable.

After establishing collision-freedom of the input sequences to the children, correctness
of computation follows by induction on the number of iterations. The idea is that the top of
the token stack pt1, t2, ‚q fed toM1 on each restart contains the most recent results from the
child evaluatorsM1 andM2 respectively.

Chained sum. Consider the expression chainpe, rq. From expression consistency, we have
Dompeq “ JrK¨JrK: each run of the parent evaluator can therefore be viewed as simultaneously
instantiating runs of bothMe andMr, a hypothetical evaluator for r. The evaluator for r
will restart itself, just as in the case of iteration. However, after the first match of r against
the input string, another thread ofMe is initialized. We maintain two copies ofMr: the first
copy is for threads which have not yet been restarted at least once, and the second copy is
for threads which have been restarted at least once. We have not constructed evaluators
Mr for regular expressions r: we instead maintain the NFA representation as a dictionary
D : QÑ Tok and thereby simulate the evaluator operation. We present the full evaluation
algorithm for chainpe, rq in algorithm 6.8.

Lemma 6.12. IfMe computes e, thenMchainpe,rq computes chainpe, rq.

Proof sketch. First, the dictionaries D1 and D2 are used in a “mutually collision-free” way. D1
and D2, even when viewed together, cannot cause a token collision. This is formally captured



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 108

Algorithm 6.8Mchainpe,rq.

1. Initialize a sub-evaluatorMe for e. Let A be an NFA which accepts r. Let D1 and D2
be two dictionaries, D1,D2 : QÑ TokYtKu, where Q is the state space of A. Initialize
the dictionaries as D1pqq “ D2pqq “ K, for all states q.

2. Given a dictionary D : Q Ñ Tok and an input symbol a P Σ, define the successor
dictionary δpD,aq : QÑ Tok as follows: δpD,a,qq “ ‚ iff there exists a unique q 1 such
that Dpq 1q “ ‚ and q 1 Ña q in A. The function δ models the state transition relation
of A.

3. Assert q0 R F, where q0 is the initial state of A and F is its set of accepting states.

4. On receiving pstart, ‚q:

(a) Invoke re ÐMepstart, ‚q. Assert that re “ none.

(b) Assert D1pq0q “ K.

(c) Update D1 :“ D1rq0 :“ ‚s, i.e. add the mapping q0 ÞÑ ‚ to the dictionary D1.

(d) Return none.

5. On receiving a P Σ:

(a) Invoke re ÐMepaq, and update D1 :“ δpD1,aq, D2 :“ δpD2,aq.

(b) Assert Eqf1,qf2 P F, ‚, ‚ 1 such that D1pqf1q “ ‚ and D2pqf2q “ ‚
1. At least one of

D1 and D2 is non-accepting.

(c) Assert re “ pv 1, ‚q iff for some qf P F, D2pqfq “ pv, ‚q. Me and D2 return values
at the same time.

(d) If for some qf P F, D1pqfq “ ‚:

i. Invoke re ÐMepstart, ‚q and update D2 :“ D2rq0 :“ ‚s.
ii. Assert re “ none.
iii. Output none.

(e) If re “ pv 1, ‚q and for some qf P F, D2pqfq “ pv, ‚q:

i. Invoke re ÐMep‚q. Assert re “ none.
ii. Update D2 :“ D2rq0 :“ pv ¨ v 1, ‚qs.
iii. Output pv ¨ v 1, ‚q.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 109

by the following invariants: (a) for all q, D1pqq and D2pqq are never simultaneously defined,
(b) for all distinct q, q 1 such that either D1pqq or D2pqq and either D1pq

1q or D2pq
1q are

defined, for all potential suffixes w 1, and potential target states qf,q 1f P Q, if qÑ
w qf and

q 1 Ñw q 1f, then either qf R F or q 1f R F, and (c) on all assignments D :“ Drq0 :“ ‚s, Dpq0q

was previously undefined. This can be proved using the fact that chainpe, rq is consistent, and
that the original input sequence γ was collision-free with respect to chainpe, rq.

Next, the input sequence fed toMe is collision-free. Informally, any potential collision
between the threads ofMe can be lifted to a collision between the threads of the regular
expression evaluatorsD1 andD2 because Dompeq “ JrK ¨ JrK. It follows that the sub-evaluator
Me is fed a collision-free input sequence γ.

Finally, except for the entry into D2 (line 5(d)i), all subsequent threads pv, ‚q contain
the value of chainpe, rq until the last restart signal. This can be proved by induction on
the length of the input stream. From this observation, it follows thatMchainpe,rq computes
chainpe, rq.

Proof of theorem 6.1. Given a QRE (resp. DReX expression) e, first construct the evaluator
Me by structural induction on e. Then initializeMe by sending it the start signal pstart,nilq,
where nil is the empty token from equation 6.3.1. The algorithm promised in the theorem is
simply the machineMe. The input sequence is vacuously collision-free because there is only
one thread. After reading the input stream w1w2 ¨ ¨ ¨wi, the evaluator returns a result pt,nilq
iff JeKpw1w2 ¨ ¨ ¨wiq “ t.

The only evaluators with memory are those for the base expressions, ϕ ÞÑ λ. There
are Op|e|q of these evaluators, each with space for exactly one token. Recall that a token
‚ “ pt1, t2, . . . , tkq is a tuple of terms. The size of the token, | ‚ | “

ř

j tj ď stpe,w1w2 ¨ ¨ ¨wiq.
The evaluation algorithm therefore needs Op|e|stpe,w1w2 ¨ ¨ ¨wiqq space.

Let tspnq and tppnq be upper bounds on the time required by Me, where n “ |e|, to
process start signals and character inputs a P Σ respectively. On receiving a start signal,
Me recursively starts each sub-evaluator, and performs a constant amount of additional
processing. We therefore have tspnq “ Opnq. Next, we catalog the following inequalities by
consulting the evaluator descriptions. For all m,n ě 1:

tpp1q ě 1 Basic expressions

tpp1`m` nq ě 1` tppmq ` tppnq Choice, op, substitution
tpp1`m` nq ě 1` tppmq ` tppnq ` tspnq split

tpp1`
ÿ

i

miq ě 1`
ÿ

i

tppmiq `
ÿ

i

tspmiq iter

Furthermore, any function satisfying the above inequalities is a valid upper bound on the
running time of Me. It follows that tppnq “ Opn2q. From tspnq and tppnq, we obtain
the Op|e|2q upper-bound on the processing time needed for each subsequent symbol of the
input.



CHAPTER 6. A FAST EVALUATION ALGORITHM FOR CONSISTENT EXPRESSIONS 110

6.5 On Streaming Composition

Our second result in this chapter is that expressions with streaming composition at the top-
level can be efficiently evaluated. While the evaluation of expressions in QRE" is certainly
decidable, we do not provide any efficiency guarantees for expression evaluation when the
streaming composition operator is arbitrarily nested (rather than just being at the top-level).

Theorem 6.13. If e1 : T˚0 ù T1, e2 : T˚1 ù T2, . . . , ek : T˚k´1 ù Tk are consistent, well-
typed, and single-use QREs such that e “ e1 " e2 " ¨ ¨ ¨ " ek : T˚0 ù Tk is well-defined, and
w P T˚0 is an input stream, then JeKpwq can be computed in time Op|e|2|w|q time and with
Op|e|2stpe,wqq memory, in one left-to-right pass over w.

Proof. The construction is exactly that shown in figure 2.12. EvaluatorsM1,M2, . . . ,Mk are
constructed for each expression. All evaluators are fed the start signal pstart,nilq, where nil is
the empty token. Each symbol wi of w is fed to the initial evaluatorM1 in order. Whenever
evaluatorMj produces a result v, it is fed to the subsequent evaluatorMj`1. The final result
is that produced byMk after all of w is consumed byM1. Correctness follows trivially by the
definition of streaming composition, and because the evaluatorsM1,M2, . . . ,Mk correctly
compute their respective functions.



Chapter 7

Quantitative Approximate Terms

In the previous chapter, we presented a streaming algorithm to evaluate consistent, single-use
QREs: this algorithm processes each input symbol in Op|e|2q time, and requires Op|e|stpe,wqq
memory. The function stpe,wq is the size of the largest intermediate term produced while
evaluating JeKpwq: in the worst case, this can grow as Op|e||w|q. This chapter is concerned
with the efficient representation of terms: for numerical domains with the usual arithmetic op-
erations (`, min, max, avg), terms can be compressed so that stpe,wq “ Op|e|q, independent
of the length of the input stream.

It is well-known that exactly computing the median of n numbers in one pass requires
Ωpnq space [78], and therefore approximation algorithms for the streaming selection problem
have been extensively studied [79]. In our setting, for some QREs which involve comput-
ing the median, we can maintain multiset summaries as histograms, so that stpe,wq “
polyp|e| logp|w|q logpUq{ logpLqq{ε, for a user-specified multiplicative error tolerance ε. Here
U and L are the highest and lowest values ever generated by applying an elementary trans-
formation to an element of the input stream.

In this chapter, we will explore two simple ideas: (a) the use of term rewriting (such
as minpp ` 3, 4q ` 2 “ minpp ` 5, 6q) to compress copyless terms t into representations
of size Op|Paramptq|q, and (b) the representation of multisets S of positive numbers as
approximate histograms h : Z Ñ N, where hi is the number of elements of S in the range
pp1` εqi´1, p1` εqis.

7.1 Motivation

Compressing arithmetic terms. Consider a “large” term, such as t “ minpminpx, 3q`2, 9q.
By routine algebraic laws such as distributivity, we can write:

t “ minpminpx, 3q ` 2, 9q
“ minpminpx` 2, 5q, 9q
“ minpx` 2, 5q.

111



CHAPTER 7. QUANTITATIVE APPROXIMATE TERMS 112

In fact, any real-valued term t built out of a set of parameters P and the operations “min”
and “`” can easily be reduced to the normal form:

t “ minP 1ĎPpcP 1 `
ÿ

pPP 1

pq

for some constants cP 1 P RY t8u for each subset of parameters P 1 Ď P. Unfortunately, when
these rules are fully applied, the resulting term has size Op2|P|q and is no longer single-use.
For example,

t 1 “ minpx` 2, 5q `minpy` 8, 7q
“ minp12, x` 9,y` 13, x` y` 10q.

Observe, however, that the size of the output term is already bounded, regardless of the size
of the input term.

The idea behind our simplification routine simplptq is therefore to only propagate constants
and not attempt to completely reduce the term to a normal form: t “ minpminpx, 3q ` 2, 9q
is reduced to minpx` 2, 5q, but t 1 “ minpx` 2, 5q `minpy` 8, 7q is left unchanged. More
specifically, simpl guarantees the following properties:

1. For all inputs t, the output simplptq is equivalent to t.

2. For all sub-terms t 1 of the output simplptq, if Parampt 1q “ H, then t 1 has already been
fully evaluated, i.e. t 1 “ c 1, for some constant c 1.

3. Whenever t 1 ` c 1 is a sub-term of the output simplptq, where c 1 is a constant, t 1 “ p 1,
for some parameter p 1. In particular, t 1 cannot itself be either of the form t1 ` t2 or of
the form minpt1, t2q. And symmetrically for each sub-term c 1` t 1 of the output simplptq.
Informally, this limits the number of constants which can appear immediately under a
“`” operator.

4. Finally, if minpt 1, c 1q is a sub-term of the output simplptq, then t 1 is either a parameter
p 1 or an instance of the “`” operator, t 1 “ t1 ` t2. In particular, t 1 is itself forbidden
from being of the form minpt1, t2q. A symmetric claim is made for potential sub-terms
minpc 1, t 1q of the output simplptq. Informally, this limits the number of constants which
occur immediately under a “min” combinator.

With these properties, we can then show that the output simplptq is of size Op|Paramptq|q.

Representing multisets. The second idea is to compactly represent multisets as approxi-
mate histograms. Consider the multiset:

C “ t12, 9, 14, 20980, 21046u.

We represent C by the array h : ZÑ N, where hi is the number of values of C which fall in
the bucket pp1` εqi´1, p1` εqis. The index i of the bucket in which a given value v falls can
be computed as i “ rlogpvq{ logp1` εqs. In our case, for ε “ 0.01, we have:

h “ t221 ÞÑ 1, 250 ÞÑ 1, 266 ÞÑ 1, 1001 ÞÑ 2u.



CHAPTER 7. QUANTITATIVE APPROXIMATE TERMS 113

The histogram itself is small: |h| “ plogpmaxpCqq ´ logpminpCqqq{ logp1` εq, but is still
sufficient to answer rank queries with multiplicative accuracy: the median discretized bucket
corresponds to the index i “ 266. Reversing the bucket index computation, p1 ` εqi “
1.01266 “ 14.1 yields a value within ˘1% of the true median, 14.

7.2 Fixing the Space of Operations

We fix an error tolerance ε ą 0. We are interested in terms of two types: (a) the set Rą0

of positive real numbers, and (b) the set MSetpRą0q of finite multisets of real numbers. For
simplicity, we assume that all real numbers can be stored in Op1q space. We are only interested
in copyless terms drawn from the following grammar:

tr ::“ c | pr
| t1 ` t2 | minpt1, t2q | maxpt1, t2q
| avgptsq | selectkptsq

ts ::“ H | ps | ttru | t1 Y t2

(7.2.1)

Here c P Rą0 is an arbitrary positive real number, pr and ps are parameters of type Rą0 and
MSetpRą0q respectively, ttru is the operation of constructing a singleton multiset out of a real
number, and selectk : MSetpRq Ñ R for 0 ď k ď 1 is the operation of finding the p|A|kq-th
largest element of the multiset A. By fiat, avgpHq “ selectkpHq “ 1. Note that we have
deliberately excluded 0 and negative numbers from consideration. Including them makes
the problems under consideration inherently memory-intensive: we will elaborate on this in
section 7.4.

Aggregation count. When operations are nested, for example with the QRE

e1 “ iterpsplitpiterpd P R ÞÑ d,medianq,M ÞÑ 0,`q,medianq

which computes the median over all months of the median transaction amount, errors
accumulated while evaluating sub-expressions grow and contribute to the total error at the
parent expression. Therefore, sub-expressions need to be computed with greater accuracy
than the overall error tolerance ε. We quantify this degree of nesting as the aggregation
count.

The aggregation count agg-countptq of a term t is the number of occurrences of the
avg and select operators in t. The aggregation count of a QRE e is the maximum aggregation
count over all outputs:

agg-countpeq “ maxtagg-countpJeKpwqq | w P Σ˚u.

For example, the QRE e1 just examined has aggregation count 2, while the expression
e2 “ foldpd P R ÞÑ d, 0, px,yq ÞÑ avgptx,yuqq has unbounded aggregation count.

Finally, the size of the multiset representation h (which is an array, h : ZÑ N) depends
on the largest and smallest real numbers under consideration. Let Λ be the set of all basic



CHAPTER 7. QUANTITATIVE APPROXIMATE TERMS 114

operations λ : ΣÑ Rą0 which appears in the QRE e. Given a stream w “ w1w2 ¨ ¨ ¨wn, we
define Uw and Lw as:

Uw “ maxtλpwiq | λ P Λ and 1 ď i ď nu, and (7.2.2)

Lw “ mintλpwiq | λ P Λ and 1 ď i ď nu, and (7.2.3)

We can now state the central result of this chapter:

Theorem 7.1. If e is a consistent, single-use, well-typed QRE over the space of terms defined in
equation 7.2.1, and has bounded aggregation count c, then for ε ą 0, JeK can be computed to
within a multiplicative factor of ε with |e|stpe,wq space, where

stpe,wq “
1
ε
poly

ˆ

|e| logp|w|q
logpUwq
logpLwq

˙

.

7.3 Analysis

We present the full term compression routine in algorithms 7.1 and 7.2. Observe the repre-
sentation of concrete multisets as arrays h : ZÑ N in algorithm 7.2: the use of arbitrary (i.e.
including negative) integers as indexes is somewhat unusual when compared to the more
common zero-based data structure present in most programming languages. This can be
easily simulated with two zero-based arrays, h` : NÑ N and h´ : NÑ N, representing the
elements at positive and negative indices respectively.

Proposition 7.2. 1. For all inputs t, simplptq is equivalent to t.

2. Running simplptq requires time Op|t|3q.

3. If t is a purely arithmetic term, then | simplptq| “ Op| Paramptq|q.

Proof sketch. First, observe that for all real-valued terms t, constants c, and operators op,
prop-constpoppt, cqq is equivalent to oppt, cq, and prop-constpoppc, tqq is equivalent to oppc, tq.
It follows that prop-constptq is equivalent to t, for all input terms t. From this, it follows that
simplptq is equivalent to t, for all input terms t, both real-valued and multiset-valued. The
second part, regarding the time complexity of simpl is also straightforward to prove.

Proving the third part requires some care. We need to produce constants a, bν, bµ, bp
and bc such that:

| simplptq| ď

$

’

’

’

’

&

’

’

’

’

%

am` bν if simplptq “ maxpt1, t2q,
am` bµ if simplptq “ minpt1, t2q,
am` bp if simplptq “ t1 ` t2, and
am` bc otherwise.

It is easier to work backwards from the constraints that these values must solve. For example,
if simplptq “ maxpt1, t2q, and both t1 and t2 are non-trivial terms, then it must be the case



CHAPTER 7. QUANTITATIVE APPROXIMATE TERMS 115

Algorithm 7.1 simplptrq: Arithmetic term simplification.

1. If tr “ c is a constant, or tr “ p is a parameter, then return tr.

2. If tr “ oppt1, t2q where op P t`,min,maxu, then let t 11 “ simplpt1q and t 12 “ simplpt2q.
Return prop-constpoppt 11, t

1
2qq.

3. If tr “ opptsq where op P tavg,medianu, then let t 1s “ simplptsq. If Parampt 1sq “ H
(i.e. t 1s ” ts is fully specified), return the fully evaluated constant Joppt 1sqK. Otherwise
(if t 1s still contains incompletely specified parameters), return oppt 1sq.

Define the constant propagation subroutine, prop-constpoppt, t 1qq as follows:

1. If t 1 “ c 1 is a constant:

(a) If t “ c is also a constant, then return Joppc, c 1qK.

(b) Otherwise, if t “ p, then return oppp, c 1q.

(c) Otherwise, if op “ `:

i. If t “ t1 ` t2, then return t1 ` prop-constpt2 ` c 1q.
ii. If t “ minpt1, t2q, then return minpprop-constpt1 ` c 1q, prop-constpt2 ` c 1qq.
iii. If t “ maxpt1, t2q, then return maxpprop-constpt1 ` c 1q, prop-constpt2 ` c 1qq.

(d) If op “ min:

i. If t “ t1 ` t2, then return minpt1 ` t2, c 1q.
ii. If t “ minpt1, t2q, then return minpt1, prop-constpminpt2, c 1qqq.
iii. If t “ maxpt1, t2q, then return maxpt 11, t

1
2q, where

t 11 “ prop-constpminpt1, c 1qq, and
t 12 “ prop-constpminpt2, c 1qq.

(e) If op “ max:

i. If t “ t1 ` t2, then return maxpt1 ` t2, c 1q.
ii. If t “ minpt1, t2q, then return maxpminpt1, t2q, c 1q.
iii. If t “ maxpt1, t2q, then return maxpt1, prop-constpmaxpt2, c 1qqq.

2. Otherwise, if t “ c is a constant, then return prop-constpoppt 1, tqq.

3. Otherwise (if neither t nor t 1 is a constant), return oppt, t 1q.



CHAPTER 7. QUANTITATIVE APPROXIMATE TERMS 116

Algorithm 7.2 simplptsq: Multiset compression.

1. Multiset summaries are represented as tuples ph, acc, Tr, Tsq, where:

(a) h : ZÑ N is the approximate histogram of all the concretely specified elements of
ts,

(b) acc P R is the sum of all the concrete elements of ts,

(c) Tr is the set of all incompletely specified members of ts, and

(d) Ts is the set of all multi-set parameters occurring in ts.

2. If ts “ H, then return ptu, 0,H,Hq, where tu is the empty array, i ÞÑ 0.

3. If ts “ ps, where ps is an array parameter, then return ptu, 0,H, tpsuq.

4. If ts “ ttru, let t 1r “ simplptrq. If t 1r “ c
1 is a constant, then return

ptlog1`εpc
1q ÞÑ 1u, c 1,H,Hq.

Otherwise (if t 1r contains parameters), return ptu, 0, tt 1ru,Hq.

5. If ts “ t1 Y t2, then let t 11 “ simplpt1q “ ph1, acc1, Tr1, Ts1q and t 12 “ simplpt2q “
ph2, acc2, Tr2, Ts2q. Return:

ph, acc1` acc2, Tr1 Y Tr2, Ts1 Y Ts2q, where
hi “ h1i ` h2i.



CHAPTER 7. QUANTITATIVE APPROXIMATE TERMS 117

that:

apm` nq ` bν ě am` bν ` an` bν ` 1,
i.e. bν ď ´1.

Similarly, if simplptq “ maxpt1, cq for some constant c, then we know that t1 is either a min,
`, or a parameter p. Therefore:

am` bν ě am` bµ ` 1, (for t1 “ minpt 11, t
2
1 q)

i.e. bν ě bµ ` 1,
bν ě bp ` 1, (for t1 “ t 11 ` t

2
1 ), and

a` bν ě 3(fort1 “ p).

By assembling all such inequalities, it can be seen that a “ 8, bp “ ´5, bµ “ ´4, bν “ ´3
and bc “ 1 is a simultaneous solution.

The reasoning used in the above proposition can be generalized into a proof of theo-
rem 7.1.

7.4 Notes

We have deliberately omitted negative numbers and the subtraction operator from the term
grammar in equation 7.2.1. Bounding the multiplicative error is crucial to composing errors
incurred by compound expressions. As the following proposition shows, computing medians
with bounded multiplicative error is memory-intensive when negative numbers are also
present.

Proposition 7.3. Consider the QRE e “ splitpiterpd P R ÞÑ d,medianq,d P R ÞÑ d,`q and
pick an ε P p0, 1q. Any one-pass algorithm which maps input streams w to values v such that
p1´ εqJeKpwq ď v ď p1` εqJeKpwq with probability at least 3{4 requires Ωp|w|q space.

The proof will proceed by reduction from the index problem in communication complexity.
The index problem is defined as follows: Alice has an n-bit binary string a1a2 ¨ ¨ ¨an, and Bob
has an index j P t1, 2, . . . ,nu. Bob wishes to compute the value aj. Any one-way randomized
protocol which succeeds with probability at least 3{4 needs to transmit at leastΩpnq bits [71].
See figure 7.1.

Proof of proposition 7.3. Wewill show that any algorithm which computes ewith low memory
requirements can also be used to solve the index problem with small data transfer. Because
we already know that this is impossible, this will yield the present result.

Let us restrict our attention to sequences of even length. Informally, given a stream w “

w1w2 ¨ ¨ ¨w2n´1w2n, the original QRE e computes the value medianpw1,w2, . . . ,w2n´1q `



CHAPTER 7. QUANTITATIVE APPROXIMATE TERMS 118

a1a2 ¨ ¨ ¨an

Alice
j P t1, 2, . . . ,nu

Bob
?

Figure 7.1: The index problem. Alice has a string of n bits, a1a2 ¨ ¨ ¨an, and Bob has an
index j. Bob wishes to compute aj. Only one round of communication is allowed. How many
bits does Alice need to send to Bob? In any protocol which succeeds with probability ě 3{4,
Alice needs to send a message at least Ωpnq bits long [71].

0
n n` j 2n´ 1 2n

2n

´2j ‚´2j

(a)

0
n´ j´ 1 2n´ j´ 1 2n´ 1 2n

2n

´2j ‚´2j

(b)

Figure 7.2: Visualizing the malicious input sequence w from the proof of proposition 7.3.
In the figure above, we show the original input sequence, and below, we show the same set
of values, but with w1,w2, . . . ,w2n´1 sorted in ascending order. Note that the slope is not
really a straight line: the i-th element has y-coordinate 2i` ai, i.e. a line with tiny bumps
corresponding to the bits ai. Observe that medianptw1,w2, . . . ,w2n´1uq is the j-th element
of the slope, i.e. 2j` aj.



CHAPTER 7. QUANTITATIVE APPROXIMATE TERMS 119

w2n. Pick an instance of the index problem pa1a2 ¨ ¨ ¨an, jq, and consider the following input
stream to e: w “ w1w2 ¨ ¨ ¨w2n´1w2n, where:

wi “

$

’

’

’

’

&

’

’

’

’

%

2i` ai for i P t1, 2, . . . ,nu,
2n` 2 for i P tn` 1,n` 2, . . . ,n` ju,
0 for n` j ă i ď 2n´ 1, and
´2j for i “ 2n.

See figure 7.2. Observe that medianptw1,w2, . . . ,w2n´1uq “ 2j ` aj. Then, JeKpwq “
p2j` ajq ´ 2j “ aj. The bit aj is definitely an element of the set t0, 1u. Thus, JeKpwq P t0, 1u.
Also, the only value within an ε-neighborhood of 0 is 0 itself.

Now consider any one-pass algorithm A which computes an ε-approximation of JeK with
probability at least 3{4. We construct the following protocol for the index problem: Alice
runs A on the first n elements of w, all of which are known to her. She passes the state of the
machine, i.e. its entire memory footprint, to Bob, who finishes processing A on the remaining
n elements of w, all of which are known to him. The size of the Alice-to-Bob message is the
number of bits consumed by an execution of A. It follows that any algorithm A to evaluate
JeKpwq with high probability consumes at least Ωpnq bits of memory.

Observe that including negative numbers—the final element ´2j of the input stream
w—is central to the above proof, and it is therefore important to disallow them from the
operations of equation 7.2.1.



Chapter 8

Experiments and Case Studies

We have implemented a prototype of the DReX / QRE framework: we will now present some
performance measurements, and anecdotally describe the experience of writing QREs and
DReX expressions. Our main findings are the following:

1. When the query is expressible in our formalism, very fast evaluation is possible: we
routinely observed throughputs of a few hundred thousand symbols per second for
small queries, and roughly 10000 symbols per second for large queries (« 3600 AST
nodes).

2. Representing intermediate results as QATs is a convenient way to control performance:
there is a linear relationship between the desired accuracy 1{ε and the memory con-
sumed by the algorithm, and increasing the error tolerance ε causes measurable in-
creases in throughput.

3. Consistent expressions arise naturally in practice. In fact, the few non-consistent
expressions were due to mistakes in the queries we had written, and the consistency
checker provided a valuable way to detect bugs.

4. Most natural string processing tasks and many stream-processing queries can be easily
expressed as QREs and DReX expressions. The principal limitations appear to be lack
of binary predicates and an equivalent of the SQL “group by” statement.

8.1 Implementation Details

The programs were written in Java 8, and relied on the symbolic automata library SVPAlib [41]
to implement the operations required by the consistency-checking algorithm. The space of
characters was all 16-bit UTF-16 code units, and the predicates were unions of character
intervals (such as [a-z, A-Z, 0-9]). We also made a prototype implementation publicly
available at http://drexonline.com.

The key component of the polynomial-time consistency checking algorithm is checking
equivalence checking of unambiguous NFAs (theorem 2.11). Rather than implementing this

120

http://drexonline.com


CHAPTER 8. EXPERIMENTS AND CASE STUDIES 121

Table 8.1: Evaluated DReX expressions and consistency-checking time.

Expression
Size (# of

AST nodes)
Consistency

checking (ms) Description

delete-comm 28 12 Delete C++-style (“// . . .”)
comments from a file

insert-quotes 28 6 Insert quotation marks (“"”) around
each alphabetic substring

get-tags 31 6 Extract tags from an XML file
reverse 5 1 Reversing a semicolon-separated

(“;”) list

swap-bibtex 1663 262 Moves the title of each BibTeX entry
to the top

align-bibtex 3652 537 Aligning titles in a mis-aligned
BibTeX file

algorithm, we instead implemented a naive equivalence checking algorithm based on NFA
determinization.

The experiments were run on a typical contemporary desktop computer, running Linux
3.16.7 on a 64-bit Intel Core i7-4770 CPU at 3.40 GHz and with 16 GB of RAM.

8.2 String Processing with DReX

Benchmark expressions. We selected 4 simple string transformation tasks that we believed
were representative of typical command-line operations, and two more complicated queries
which involved manipulating BibTeX files. We name the queries and their expression sizes in
table 8.1.

Baseline. We compared the fast evaluation algorithm of chapter 6 with a straightforward
dynamic-programming based evaluation technique suggested by the semantics. Given an
expression e, and an input stream w, the idea is to maintain a table memopf, i, jq : D Y
tundef, uncomputedu which maps sub-expressions f of e and substrings wri..js to values
JfKpwiwi`1 ¨ ¨ ¨wjq. The semantics of function expressions provide a natural way to compute
memopf, i, jq in terms of its sub-expressions f 1 and substrings wrk..ls with i ď k ď l ď j. The
complexity of this algorithm is Op|e|, |w|3q.

Results. We ran each benchmark expression 16 times, on a range of input strings, and
report the average running time in figures 8.1 and 8.2. We randomly generated input strings



CHAPTER 8. EXPERIMENTS AND CASE STUDIES 122

´10 0 10 20 30 40 50 60 70 80 90 100 110

0

2

4

6

8

dc

iq
gt
rev

sb

ab

Input length (ˆ103 characters)

Ev
al
ua

tio
n
ti
m
e
(s
)

delete-comm (dc) insert-quotes (iq) get-tags (gt)
reverse (rev) swap-bibtex (sb) align-bibtex (ab)

Figure 8.1: Performance of the streaming DReX evaluation algorithm. For comparison,
observe that the baseline non-linear evaluation algorithm in figure 8.2 is much slower.

for the four simple expressions, and randomly created actual BibTeX files for swap-bibtex
and align-bibtex. A timeout of 60 seconds was chosen for all experiments.

In table 8.1, observe that (even with the naive non-polynomial implementation) consis-
tency checking always finishes in less than 1 second. Next, the performance of the streaming
evaluation algorithm in figure 8.1 is indeed linear, as we would expect from our theoretical
analysis. The evaluator finishes computation in less than 8 seconds, even for files as large
as 100000 characters, and reasonably large expressions such as align-bibtex. In contrast,
the baseline dynamic programming algorithm does not scale to strings longer than a few
thousand characters.

We also programmed the benchmark transformations in sed, AWK, and Perl. Regular
expression based substitution, as present in all of these tools, is very efficient and usable to
substitute or delete substrings based on patterns. This includes the benchmark programs
delete-comm and insert-quotes, for which the sed implementations were « 6 times faster
than the DReX ones. On the other hand, reverse, swap-bibtex and align-bibtex were
hard to express in line-based tools such as sed and AWK. The Perl implementations of these
functions were « 2 times faster than ours.



CHAPTER 8. EXPERIMENTS AND CASE STUDIES 123

10 100 1,000 10,000 100,000

0

10

20

30

40

50

60
dc

iq

gt

rev

sb
ab

Input length (characters)

Ev
al
ua

tio
n
ti
m
e
(s
)

delete-comm (dc) insert-quotes (iq) get-tags (gt)
reverse (rev) swap-bibtex (sb) align-bibtex (ab)

Figure 8.2: Performance of the baseline DReX evaluation algorithm.



CHAPTER 8. EXPERIMENTS AND CASE STUDIES 124

Table 8.2: QRE evaluation performance. This table lists the time and space needed to process
10 million tuples of the respective data streams, with ε “ 0.01.

Space Throughput
Query (ˆ103 bytes) (ˆ103 tuples / s) Description

Bank 1 26.3 584 Median amount deposited during
each month

Bank 2 21.0 788 Median monthly closing account
balance

Bank 3 1.06 12500 Median number of transactions on
the “busy day”

Bank 4 26.2 557 Number of consecutive trailing
months for which monthly savings
are in the top / bottom quartile

NEXMark 1 7.58 60.5 Median bid for items in the category
“100”

NEXMark 2 16.4 48.3 Maximum of the median bid price
from US and non-US customers

Linear Road 11.1 137 Average over all lanes of the median
lane speed

8.3 QREs and Query Approximation

Bank transaction data. We implemented a synthetic data stream indicating the transactions
of a customer with a bank. The stream is parameterized by U, the maximum amount that
the bank allows the customer to deposit in a single transaction. There are three kinds of
values in the data stream: deposits of d dollars, where 1 ď d ď U, end-of-day markers D,
and end-of-month markersM.

The elements of the data stream are drawn independently and identically, by the following
process: (a) with probability 60{91, the value is a deposit, where the amount d is a real
number chosen uniformly at random from the range r1,Us, (b) with probability 30{91, the
value is the end-of-day markerD, and (c) with probability 1{91, the value is the end-of-month
markerM. We ask four questions of the data stream:

1. Over all calendar months, what is the median amount deposited into the account during
a single month?

2. Over all calendar months, what is the median account balance at the end of the month?

3. The bank defines the “busy day” of each month as the day on which the most number



CHAPTER 8. EXPERIMENTS AND CASE STUDIES 125

of transactions are made. Over all months, what is the median number of transactions
the customer makes on the busy day?

4. To monitor the savings of the customer, the bank computes the number of consecutive
trailing months for which monthly savings are in running top / bottom quartile.

We intended to highlight the memory-usage profile of the expression evaluator, and so
deliberately included many more medians than would be typically seen.

In table 8.2, we list the time and space needed to evaluate the queries on the bank
transaction data stream. The measurements were made for a fixed stream of 10 million
tuples, and for a fixed accuracy ε “ 0.01. In figure 8.3, we plot the performance of the system
on the bank transaction data stream, as a function of stream length and desired accuracy.
We measured space usage by serializing the evaluator state into a sequence of bytes, and by
measuring the length of this serialized representation. The blue, red, brown, and black lines
are results obtained from queries 1 to 4 respectively. The first plot measures the space needed
for query evaluation as a function of the stream length (for a fixed ε “ 0.01). The second
plot measures the space needed for QRE evaluation as a function of the desired accuracy ε
(for a fixed stream length of approximately 10 million tuples). The last plot measures the
throughput of the evaluation algorithm as a function of the desired accuracy ε.

Notice that with increasing stream length, the memory usage initially climbs rapidly, but
quickly settles into a region of more conservative growth, consistent with the theoretical claim
that the space required is logarithmic in the length of the data stream. Also observe the linear
relationship between 1{ε and the space needed for evaluation, as predicated by theorem 7.1.
Finally, observe that the throughput of the QRE evaluator decreases somewhat with increasing
accuracy requirements (larger values of 1{ε). There are two major components during QRE
evaluation: maintenance of state, and updating the terms. This explains the slow (but still
extant) drop in throughput with decreasing ε.

Query 3, which measures the median number of transactions on the busy day, is notable
for its nearly constant memory usage regardless of the stream length or desired accuracy. This
is because of the nature of the data source: since the probability of a deposit transaction is
twice the probability of an end-of-day marker, the number of transactions in a day is typically
a small number. Therefore, there are typically only a few distinct buckets in the approximate
multiset summary with non-zero values, regardless of the stream length.

NEXMark. Next, we used the NEXMark data stream [90], which is a simulated sequence
of events from an auction house. There are three kinds of tuples: (a) Auction tuples, which
announce an item to be auctioned. This includes the item id, seller, and the start and end
times of the auction. (b) Person tuples, including the person’s id, name, and address. Persons
both put up items for auction, and place bids on items being auctioned. And (c) bid tuples,
which reference the item considered, the person making the bid, and its value.

We evaluate two queries over the NEXMark data stream: (a) What is the median bid
made for items in category 100? And (b) maximum of the median bid price from the US and
non-US countries. The performance of the query evaluator on each of the queries is listed in



CHAPTER 8. EXPERIMENTS AND CASE STUDIES 126

0 2 4 6 8 10
0

10

20

B1

B2

B3

B4

Stream length (ˆ106 tuples)

Sp
ac
e
us
ed

(ˆ
10

3
by
te
s)

(a)

10 50 100
0

10

20

B1

B2

B3

B4

1{ε

Sp
ac
e
us
ed

(ˆ
10

3
by
te
s)

(b)

10 50 100
0

5,000

10,000

15,000

B1

B2

B3

B4

1{ε

Th
ro
ug

hp
ut

(ˆ
10

3
tu
pl
es

/
s)

Bank 1 (B1) Bank 2 (B2) Bank 3 (B3) Bank 4 (B4)

(c)

Figure 8.3: QRE evaluation performance on bank transaction data.



CHAPTER 8. EXPERIMENTS AND CASE STUDIES 127

Table 8.3: Comparing QRE evaluation performance with a handcrafted implementation.

Space ratio Throughput ratio

Bank 1 1.44ˆ 37.1ˆ
Bank 2 1.71ˆ 36.2ˆ
Bank 3 15.5ˆ 51.5ˆ

table 8.2. With varying ε and stream length, the trends in performance are similar to those
figure 8.3, but have not been plotted.

Linear Road. Our final data source was the Linear Road benchmark [25]. The data is a
simulation of an expressway system, and models a city with a reactive tolling system, where
the tolls charged are a function of the freeway conditions. There are four types of tuples in
the data stream: vehicle position tuples, generated by vehicles on the freeway reporting their
position to the server, and the remaining tuples encode queries, including requesting the
account balance, daily expenditure, and travel time.

The traffic simulation covers a physical time of three hours, and is parameterized by L,
the number of expressways in the system. A flat listing of tuples for L “ 1.0 is available at
http://www.it.uu.se/research/group/udbl/lr.html, which we used in our experiments.
We computed the average over all lanes of the median lane speed. In Table 8.2, we list our
measurements for all queries considered. Observe that even for large data streams of 10
million tuples, a result with accuracy ε “ 0.01 can be computed using under 20 KB of memory.
Since the data stream covers a physical time of 3 hours, the throughput of of 137000 tuples
per second is also sufficient this application.

Results. Finally, in table 8.3, we compare the performance of the QRE evaluation algorithm
against a implementation of the query programmed directly against the QAT API. Note that
while the QRE implementations are significantly slower than the direct QAT-based implemen-
tation, the space usage is not much higher. We anticipate that with better engineering, the
time penalty of QREs can be brought down even further (as for example, in [56], where a
similarly motivated system for string transformers achieves throughputs in the 1 Gbps range).

8.4 Anecdotal Account of User Experience

We were able to easily program several non-trivial transformations without having to worry
about efficiency.

Expression consistency. The most important restriction of the system is that the evaluated
expressions be consistent. The natural way to express our example queries always turned

http://www.it.uu.se/research/group/udbl/lr.html


CHAPTER 8. EXPERIMENTS AND CASE STUDIES 128

out to be consistent. Moreover, in many cases the consistency check helped us to identify
sources of ambiguity that made the query incorrect. For example, we had mistakenly concate-
nated the sub-program copy-spaces “ iterpisSpacepdq ÞÑ dq, which copies all whitespace
characters (including tabs and newlines), with itself. In addition to certifying consistent
queries, the checker also provides witnesses to non-consistent expressions. In the case of
splitpcopy-spaces, copy-spacesq, the checker warned us that the expression was ambiguous
for the input string “\n”. This was clearly a bug in our script, would have otherwise led to
unexpected behavior, and the counter-example witness helped us to eventually write the
correct query.

Function composition. Regular string transformations are closed under function composi-
tion (this is similar to but not the same as streaming composition). Unfortunately, we have the
following intractability result about DReX`t˝u: given an expression e in the class DReX`t˝u,
determining whether JeKpεq is defined is PSPACE-complete [14]. We have therefore omitted
function composition from the calculus. While it would be convenient in desugaring the
front-facing language presented at drexonline.com, we have otherwise not found instances
where the operator was crucially required.

Binary predicates, group by, and sliding windows. Both NEXMark [90] and Linear
Road [25] come with a library of benchmark queries. We were unable to express many
of these pre-specified queries as QREs. These inexpressible queries are often similar to “What
is the average time a car spends on the freeway?”, or “What is the average auction closing
price over all items?” As pointed out by Kostas Mamouras, evaluating such queries involves
separating the input stream by the car id, or the item id of the article being auctioned, and
then performing some computation over this sub-stream. We are unable to express this oper-
ation, very similar to group by from SQL, using QREs. In our later work on this subject [20],
we explicitly add an operator called “map-collect”: with this additional operator, all NEXMark
and LinearRoad queries are easily expressible.

Another inexpressible query is to recognize increasing sequences of numbers. Our basic
expressions are of the form ϕ ÞÑ λ, where ϕ : DÑ Bool is a unary predicate, but the pattern
“Increasing sequence of numbers” crucially involves the two-place predicateϕpx,yq “ “x ă y”.

Sliding windows are a common idiom in many stream-processing operations. For example,
“What is the average vehicle speed over the last 60 minutes?”. While these operations are
expressible as QREs, they typically involve concatenating an expression with itself many
times. Both syntactic sugar and evaluator-level heuristics to improve performance on these
expressions would be very useful.

drexonline.com


Chapter 9

Related Work

We may broadly categorize the relevant research literature into four buckets: (a) parsing tech-
nologies, ranging from regular-expression based tools such as sed, AWK, Perl, and SNOBOL,
to more complex pieces of software, such as parser generators and combinators; (b) founda-
tional work on transducers and string constraint solvers, motivated by applications in biology
and natural language processing, and more recently by applications in the static analysis
of web-applications and other string-processing programs; (c) streaming databases, targeted
towards applications in processing internet-scale data, and which, in contrast to traditional
relational databases, view the data as being continuously updated, and the queries answered
as being mostly constant; and (d) fundamental work on streaming algorithms, which seeks
to answer specific queries with extremely tight space- and time-guarantees. We will now
summarize the related work in each of these areas.

9.1 Parsing Technologies

sed. The command line tool sed extends traditional regular expressions with primitives
for substitution. The result is a powerful text-processing system which can express many
of the same text processing operations that we considered in chapter 8. The underlying
computational model consists of two buffers, named the “hold space” and “pattern space”
respectively, and various commands to move data between these buffers. In particular, these
commands include the ability to loop and repeatedly perform another sequence of commands.
Turing-completeness arises because of these looping commands and because the two buffers
can be used as stacks. Consider the string reversal function:1

sed ’/\n/!G;s/\(.\)\(.*\n\)/&\2\1/;//D;s/.//’

Informally, the script may be read as:

1. Split the string into a one-character-long head (“\1”) and the remaining tail (“\2”).

2. Store “\2\n\1” on the pattern space.
1https://groups.google.com/forum/#!topic/comp.unix.shell/s4hfVpJYX2Q

129

https://groups.google.com/forum/#!topic/comp.unix.shell/s4hfVpJYX2Q


CHAPTER 9. RELATED WORK 130

3. Repeat on “\2” until it is empty.

Observe that the presence of both buffers and of the command to repeat steps 1 and 2 (“//D”)
is essential to the working of this script.

SNOBOL [59]. SNOBOL is an early system for string processing. The basic constructs
include matching against the following patterns (note the absence of full Kleene-*):

P ::“ w P Σ˚ | P1 ¨ P2 | P1 ` P2,

and goto-based control flow. As with sed, Turing-completeness seems essential to the expres-
sive power of the language.

One immediate way to limit the expressive power and allow static analysis is to eliminate
loops and arbitrary gotos. This however makes most interesting functions, such as replace
every occurrence of a character with another, immediately inexpressible. Another way to
limit its expressive power is to allow arbitrary gotos, but disallow other features such as
integer-valued registers. It is not immediately clear that this class of SNOBOL programs
always terminates: it is possible that various two-stack-based tricks, such as those used in
sed, can still be applied in this restricted system. Another possibility for this restricted class
is that programs always terminate, but often require super-linear time. It is an interesting
research problem whether equivalence-checking an pre-/post-condition checking is decidable
for this restricted class of SNOBOL programs.

Summary. Other tools in this general category include SNOBOL [59], AWK, Perl, and
PCRE [65]. The notion of “regular expressions” in these practical systems usually in-
cludes many powerful extensions such as back-references: this makes the parsing problem
NP-hard [88]. The usual approach is to design an backtracking evaluator: these are usually
very fast for common cases, but predicting performance degradation is hard. Furthermore,
as with sed and SNOBOL, many of these tools are Turing-complete, making mechanical
verification very difficult.

All these string-manipulating systems lack the small core of DReX, making any kind of
programmer support a challenging task. Furthermore, it appears that the features which cause
Turing-completeness are essential to their expressive power. While removing these features
will certainly make the main static analysis problems (equivalence and pre-/post-condition
checking) decidable, it severely limits their expressiveness, and it is not immediately clear
that some of the other possibilities of the QRE / DReX framework, i.e. potential for automatic
parallelization, query optimization, better support for debugging etc., can be provided even
in these restricted systems.

Kleenex. Kleenex is a tool to determinize non-deterministic SSTs [56]. The input to Kleenex
is an EBNF-like format which combines regular parsing with imperative parser actions. The
Kleenex compiler converts this to a deterministic machine which guarantees the lexico-
graphically smallest parse tree. Kleenex is an extremely well-optimized system—providing
optimization guarantees such as early commits—and sustains throughputs of about 1 Gbps
on contemporary desktops.



CHAPTER 9. RELATED WORK 131

Parser combinators. Parser construction tools such as parsing expression grammars [54]
and parser combinators have received renewed attention in recent years. Some of these
systems also come with very good programming language integration, such as the Parsec
library [74] and the Boost Spirit framework [44]. One concrete pattern which is difficult to
express with traditional parser combinators are expressions such as combinepe, fq or oppe, fq.
Recall that the feature most similar to these is that of language intersection, and this involves
simultaneously computing multiple parse trees and performing several different computations
on the same input string. In general, the focus of many of these systems focus is on efficiently
constructing parse trees, in contrast with DReX expressions where our focus is on efficiently
computing values with provable bounds on time- and space-complexity.

9.2 Transducer Models

Finite state transducers. In chapter 3, we defined regular string transformations oper-
ationally, as those machines which can be implemented by streaming string transducers
(SST). SSTs were originally introduced by Alur and Černý [9, 10], as a model by which to
verify properties of single-pass list processing programs. Their main results include: (a) the
decidability of SST equivalence and pre-/post-condition checking in PSPACE [10], and (b) the
equi-expressiveness of SSTs and the functions expressible as formulas in monadic second-order
logic (MSO) [9].

The concept of specifying string- (and more generally graph-) transformations in MSO was
first considered by Courcelle [38]. Engelfriet and Hoogeboom [51] then showed that MSO-
definable string transformations are the same as those which can be implemented by two-way
finite state transducers (2-FST). This mirrors the classical results of Büchi [34], Elgot [50],
and Trakhtenbrot [89], who showed that languages definable in the MSO-logic of one
successor, S1S, are exactly those which are accepted by finite automata. This correspondence
prompted [51] to label the class of functions definable by two-way finite state transducers as
“regular” string transformations.

It is well-known that, unlike in the case of finite-state acceptors, 2-FSTs are strictly more
expressive than one-way transducers: this gap includes several “natural” functions such as
string reversal (w ÞÑ reversepwq) and string repetition (w ÞÑ ww). However, the post-image
of a regular language with respect to a 2-FST need not be regular [6]. While the equivalence
problem for non-deterministic 2-FSTs is undecidable [58], the equivalence of deterministic
2-FSTs is decidable [64]. Closure under composition of deterministic 2-FSTs was established
in [37].

Both SSTs and 2-FSTs share many of the same appealing properties as DReX: simple,
efficient evaluation algorithms, decidable equivalence and pre-condition computation, and
robust closure properties. Still, they are both inherently operational models which force
programmers to explicitly think about what state needs to be maintained and how it should
be updated. We are not aware of a prior characterization of regular string transformations
by a set of combinators analogous to the characterization of regular languages by regular
expressions.



CHAPTER 9. RELATED WORK 132

Weighted automata and regular cost functions. String-to-number transformations have
traditionally been modelled using weighted automata [49]. Weighted automata find applica-
tion in natural language processing in problems such as transliteration and optical character
recognition [69] and in the modeling of probabilistic systems [26]. First, fix a semiring,
pD,`, ¨, 0, 1q. Now, a weighted automaton is an NFA A over the input alphabet Σ, where each
transition is labelled with a weight d P D. Given an input string w and an accepting path
σ “ q0 Ñ

w qf through A, the weight of σ is defined to be the product of all the transition
weights along the path. The weight ofw is defined to be the sum of the weights of all accepting
paths.

Equivalence for weighted automata over the tropical semiring, pZ Y t8u,min,`,8, 0q
is known to be undecidable, by a reduction from Hilbert’s tenth problem [72], and by a
reduction from the halting problem for two-counter machines [7]. Weighted automata over
pZY t8u,min,`,8, 0q are strictly more expressive than regular cost functions, while single-
valued weighted automata are equi-expressive as regular cost functions with D “ NY t8u
and G “ t`u.

We introduced the model of regular cost functions in [13], mostly by a motivation to
generalize the previous concepts of regular string transformations and regular tree transforma-
tions [12] to quantitative functions. A regular cost function is one which can be implemented
by a streaming string-to-term transducer, which maps input strings to terms over the output
domain. In certain situations, such as over the cost domain of pZ,min,`q, there are equivalent
models which operate over concrete values: we call these “cost register automata (CRA)”.
The decidability of various analysis problems for CRAs depends largely on the cost domain:
for example, we solved register minimization problem for the simple class of additive CRAs
in [21], while the register minimization problem for SSTs is still open.

Symbolic automata. In contrast to traditional regular expressions, where the basic ex-
pressions are of the form a, where a P Σ ranges over a small, finite alphabet, our basic
expressions were of the form ϕ ÞÑ λ, where ϕ : Σ Ñ Bool was a symbolic single-element
predicate. Allowing such predicates in the basic expressions was extremely helpful to handle
large alphabets such as Unicode, and even potentially infinite alphabets such as the set of
all measurements that can be emitted by a sensor. This choice was motivated by the recent
development of symbolic automata and symbolic transducers [93, 94]. Symbolic automata
are similar to traditional automata, except that the edges may be labelled by predicates
over the alphabet. For example, an edge may be of the form qÑisVowel q 1, which succinctly
encodes 5 different transitions: q Ña q 1, q Ñe q 1, q Ñi q 1, q Ño q 1, and q Ñu q 1.
Assuming reasonable properties over these predicates, i.e. that the space of predicates is
closed under boolean combination, and that predicate evaluation and satisfiability checking
are both decidable, symbolic automata share many of the same appealing properties as their
classical counterparts: deterministic and non-deterministic SFAs are expressively identical,
and string membership testing, SFA equivalence, containment and minimization [43] are all
decidable.

When binary predicates are allowed, such as qÑx,y,if xďy q 1, meaning “Consume two
elements x, y on the qÑ q 1 transition, where the transition is enabled if x ď y”, it is known



CHAPTER 9. RELATED WORK 133

that equivalence is undecidable [42]. This result was the primary reason that we disallowed
binary predicates in the QRE / DReX formalisms. This is admittedly a severe restriction
from a practical perspective, although our later experience with StreamQREs has shown that
map-collect (a variant of the SQL group by) greatly lessens this burden.

Static analysis of string transformers and constraint solving. One of the important
applications of symbolic automata has been in the static analysis of string transformation
programs, particularly in security-critical applications. This has resulted in tools such as
Bek [67], Kudzu [82], Saner [27] etc. These languages are usually tightly coupled to the
underlying transducer model, forcing the programmer to think in terms of low-level primitives
such as a machine making a single left-to-right pass over the input. Furthermore, these
languages capture a strict subset of the class of regular string transformations, disallowing
functions such as string reversal.

A common theme in the formal verification of string manipulating programs is to assert
state invariants, and use constraint solvers to find strings which violate these invariants.
Starting with the seminal work of Makanin on solving string equations [77], this approach is
exemplified by tools such as HAMPI [55], Norn [5], Z3-Str [100], and the string solver in
CVC4 [76]. In contrast, our proposed approach to the static analysis of DReX—also adopted by
tools such as Bek—is to model sanitizers as transducers and prove properties using properties
of the transducer model.

Matching regular expressions. Our definition of consistent DReX and consistent QREs in
chapter 2 was guided by several current challenges concerning regular expressions. Matching
extended regular expressions (traditional regular expressions extended with complement
and intersection as fundamental operations) is a difficult open problem [81]. Unrestricted
choice (else) and cost operations (op) are a potential route to encode complementation and
intersection respectively. The consistency rules provided a simple technique to avoid these
difficult anti-patterns.

Myers [80] applied the four Russians technique to the regular expression matching
problem to obtain (surprisingly efficient!) complexity improvements. Veanes et al [95]
carefully considered the execution of symbolic finite state transducers and engineered data-
parallel evaluators which are much faster on real-world HTML encoders and decoders. We
plan to investigate whether any of these techniques can be applied to DReX and QREs.

Expression inference. One of the main open problems with DReX and QREs is of learning
function expressions. The inference procedure can learn either from a given set of input-
output examples, or in a setting similar to that of Angluin’s L* algorithm [22], i.e. where
a teacher is able to answer evaluation and counterexample queries. Bojańczyk has made
some progress towards solving this problem for streaming string transducers [31]: if the
teacher is also able to provide origin information, i.e. informally trace each character of the
output back to the specific input character which produced it, then he is able to obtain a
machine-independent characterization of SSTs similar to the Myhill-Nerode theorem, and
extends this to an L*-like learning algorithm.



CHAPTER 9. RELATED WORK 134

Botinčan and Babić investigate the problem of automatically learning symbolic transducers
from input-output examples [32], but they are primarily restricted to one-way transducers.

Sumit Gulwani’s work [61, 84, 62] on learning string transformations in spreadsheets is a
notable example, both for a system that is able to quickly learn complicated string transforma-
tions, and for how useful programming-by-example systems can be to non-programmers. The
major differences between the FlashFill language and DReX are that: (a) every sub-expression
consumes the entire input string, potentially producing only a small substring of the final
output, and (b) unlike in DReX, choice operators can only be placed at the top-level, and
function essentially like a switch-case statement, where the conditions are regular expressions.
It appears that character-wise transformations (“Convert all upper-case to lower-case letters”)
and functions like shuffle are difficult to express in the FlashFill formalism. However, it
is difficult to pin the relative expressive powers of DReX and FlashFill with certainty. The
2016 edition of the SyGuS competition included a track to learn string transformations from
input-output examples, inspired primarily by systems such as FlashFill [18].

9.3 Streaming Databases

Compared to traditional databases, where the logical model is of instantaneous query exe-
cution, and where the insertion and deletion of records invalidates the results of previous
queries, streaming databases usually assume that the queries are (mostly) static, and that
the underlying data is incrementally updated. Early work on streaming databases included
systems such as Tapestry [87] for email and bulletin-board messages. Materialized views have
also been proposed as a way to model continuously changing data [63, 68]: a materialized
view is an object containing the results of a query, and the technical problem is to maintain
and update these materialized views as the underlying relations change. There is also a
large body of more recent work on data stream management systems, such as Aurora [4],
Borealis [3], and STREAM [23, 24].

Query models. The query models typically supported by these systems is exemplified by
CQL (Continuous Query Language) [24]. There are two types of objects in the CQL universe:
“streams” and “relations”. Sliding-window operators (for e.g., “Collect the last 100 tuples
observed on stream S”, or “Collect all tuples observed within the last 60 seconds on S”)
provide a way to convert streams to relations, and the sequence of updates to each relation
automatically forms a stream (for e.g., “Emit all elements in Rt which were not present in
Rt´1”). The full power of a relational query language such as SQL is available to operate on
relations.

In terms of expressiveness, CQL and QREs are incomparable: It is possible to express
joins over dynamically changing relations in CQL, and it gracefully extends to simultaneously
handle multiple input streams. On the other hand, with QREs, we can impose complicated
structure over the data stream, and this is difficult to express with CQL’s more constrained
sliding window model-of-state.

Aurora [4] and Borealis [3] model a continuous query as a data-flow program, where



CHAPTER 9. RELATED WORK 135

the programmer specifies a network of stream operators. Each stream operator is a simple
transformation such as a filter, project, persistence, or streaming join. In our later work on
StreamQREs [20], we introduce a new operator named “map-collect” (similar to group by
from SQL), and observe that streaming joins are not crucial to practical expressiveness. It is
an interesting direction of future work to extend the underlying model of QREs to multi-tape
transducers, and attempt to simulate streaming joins.

One important limitation of sliding windows is that the length of the window is determined
ahead of time. This is somewhat mitigated in systems such as CEDR [28] and Punctuated
Streams [91, 75] where the use of punctuations triggers the closing of a window. Still, our
use of regular patterns to specify the parsing makes QREs more general.

Systems. There are a number of robust production-ready stream processing systems. Of
these, PipelineDB exemplifies the idea of materialized views as continuous queries [2].
Apache Storm is a distributed computing system specialized for stream processing [1]: the
programmer specifies a processing topology, i.e. a graph where each node is a processing
element and the edges represent data flows. The result is a very well-engineered system,
and involves consideration of issues such as node failures and network topologies. Spark
Streaming adds support for micro-batch based stream processing to the seminal Spark
framework [98, 99]. All of these are well-engineered systems, and pay careful attention to
practical issues such as network latencies and node failures. However, they mostly require
manual implementation of individual stream processing elements, and do not provide high-
level views of the underlying data stream. One potential direction of future work is to add
support for QREs while creating individual stream processing elements (called “bolts”) in a
system such as Storm.

One prominent commercial product is the IBM Streams platform [66], which motivated
projects such as ActiveSheets [92]. ActiveSheets functions as a spreadsheet plugin. Data
streams are published by sources such as financial markets: these streams may be “imported”
into a spreadsheet as a periodically changing collection of cells. For example, cells “A1” through
“A50” may display the values of the last 50 transactions from the stock exchange. A small set
of extensions to traditional spreadsheet formulas specifies when to tick the output cells. By
allowing the programmer to maintain arbitrary state, ActiveSheets mostly subsumes QREs in
expressiveness. However, the programmer has to explicitly reason about what intermediate
values need to be computed and what state needs to be maintained, and this lacks the
benefits of declarative programming. Nevertheless, by presenting a spreadsheet interface
which should be familiar to a much larger group of computer users than just programmers,
ActiveSheets highlights the importance of usability in these systems.

Complex event processing. Cayuga [45, 46, 33] is an example of a system for complex
event processing (CEP). In contrast to QREs, which deal with computing numerical summaries
of data streams, CEP systems typically implement a publish/subscribe query model, where
a server publishes a stream of events, and clients can subscribe to event patterns on whose
occurrence they wish to be notified. Just as QREs, they can express complicated automaton-
based stateful properties. They can often express more involved properties, such as “Notify



CHAPTER 9. RELATED WORK 136

on the first sale of the stock for a price lower than the previous sale”.
NiagaraCQ [35] uses query grouping and other optimizations to build an efficient system

that can simultaneously execute multiple queries at internet scale. CEP has many applications,
including in processing streams of RFID readings [96]. See [40] for a broad survey.

Benchmarks. There are several benchmarks produced by the research community working
on streaming databases: this includes (a) the query repository compiled by the STREAM
project [60], (b) the NEXMark benchmark describing a sequence of events simulated online
auction and an associated set of queries [90], and (c) the Linear Road benchmark involving a
sequence of events concerning a freeway traffic management system [25]. These are helpful
to measure the performance and expressiveness of QREs in realistic settings. The queries
that we were unable to express provided a guide to extensions to the QRE framework. We
note that these benchmarks were created with existing stream processing platforms in mind:
in particular, they do not require temporal and stateful computational primitives such as
iteration or global choice, and do not exercise all of the QRE framework.

The recent Yahoo Stream Processing benchmark [36] includes a data stream generator
and a target query: the intent is to benchmark distributed stream processing platforms such
as Apache Storm, Flink, and Spark Streaming. Because of its focus on measuring datacenter-
scale effects such as those caused by network latencies and buffering, it is somewhat less
relevant to us than the remaining benchmarks. Still, the single-machine instance of this
benchmark, which includes a Storm reference pipeline is a valuable guide to the processing
speed of current data stream processing systems.

9.4 Streaming Algorithms

There is a large body of work on streaming algorithms, beginning with the seminal work
of Munro and Paterson [78], Flajolet and Martin [53], and the work of Alon, Matias and
Szegedy on computing frequency moments [8]. See [79] for a broad survey.

The online computation of quantile summaries is particularly relevant to this thesis:
see [57] for a survey. The rank of a number v given a set A is the number of elements of A
which are less than v:

rApvq “ |ta P A | a ă vu|.

The histograms of chapter 7 guarantee “approximation-by-value”: given k P N, an error
tolerance ε P r0, 1q, and a stream A with n elements, they return a value v such that for
some number vtrue with rank rApvtrueq “ k, p1 ´ εqvtrue ď v ď p1 ` εqvtrue. In contrast,
most algorithms in the literature guarantee “approximation-by-rank”: given k P N, an error
tolerance ε P r0, 1q, and a stream A with n elements, they return a value v such that
|rApvq ´ k| ď εn.

Let A1, A2, . . . , An be a family of sets with medians v1, v2, . . . , vn respectively. Say
we are interested in computing the median of these medians: V “ mediantv1, v2, . . . , vnu.



CHAPTER 9. RELATED WORK 137

Consider a sequence of numbers v̂1, v̂2, . . . , v̂n, each of which has rank close to that of the
median:

ˇ

ˇ

ˇ

ˇ

rAipv̂iq ´
|Ai|

2

ˇ

ˇ

ˇ

ˇ

ď
ε|Ai|

2

Then the values V and V̂ “ mediantv̂1, v̂2, . . . , v̂nu may be arbitrarily different: i.e. while
existing algorithms typically have better space utilization than our representation, the
approximation-by-rank guarantee is not compositional.

Most research on streaming algorithms focusses on computing specific functions with
highly constrained space and time budgets: this is orthogonal to our goal in this thesis, which
is to provide a general framework to hierarchically express a large class of queries. Our
hope is that developments in the area of streaming algorithms will automatically allow larger
classes of QREs to be efficiently computed.



Chapter 10

Conclusion

10.1 Summary

In this thesis, we considered the problem of specifying stream transformations. We introduced
two programming abstractions, DReX and QREs, and argued that:

1. They are a convenient way to describe queries over streaming data. Queries can be
composed in a modular way, and can naturally express structured computation over
inherently unstructured data such as logs and event streams.

2. Consistent function expressions can be quickly evaluated, and memory-efficient approx-
imation algorithms can be automatically extracted from some queries which are hard
to exactly compute.

3. They have appealing theoretical properties and are expressively robust: expressiveness
is closed under function composition, input reversal, and regular look-ahead. The
class of functions expressible using DReX and QREs coincides with the class of “regular”
stream transformations.

10.2 Future Work

Applications. QREs have already been extended to describe network management poli-
cies [97]. They use QREs (with a few extensions similar to the “map-collect” operator which
we will describe later in this section) to identify patterns such as super-spreaders (nodes
which contact a large number of servers during a time period), estimate the entropy of
network traffic, and detect malicious traffic patterns such as SYN-flood attacks. There is
an opportunity to explore various other domain-specific extensions of QREs, such as in the
analysis of data from medical devices such as pacemakers.

Jyotirmoy Deshmukh recently pointed out that the single-pass evaluation of quantitative
functions is very similar to certain monitoring problems in the area of cyber-physical systems.
Consider an engineer developing an automotive engine controller. Say they wish to assert that
the engine speed never exceeds 5000 rpm. There are a variety of quantitative extensions to

138



CHAPTER 10. CONCLUSION 139

temporal logic in which such properties could be specified, such as metric temporal logic [52]
and signal temporal logic [48]. In these applications, it is natural to speak of numerical
robustness measures—how well does the system satisfy the property—rather than just a
boolean YES / NO answer. For example, an engine whose maximum speed is 4300 rpm
satisfies the Gpspeed ď 5000q specification more comfortably (with 500 rpm to spare) than
an engine which occasionally reaches 4970 rpm. The logics under consideration can be
naturally extended to map traces to real numbers, which indicate how much distortion the
input signal can handle before violating the property. In a large class of real-world settings,
because the system under consideration is complex, engineers often resort to testing rather
than exhaustive verification. The technical problem is to compute the robustness score given
the specification and simulation trace. While there is some work on online monitoring for
these robustness measures [47], the general case of unrestricted STL formulas is still open.
When extended with robustness measures, STL and MTL are both similar in spirit to QREs:
can the techniques we developed for single-pass QRE evaluation in chapter 6 be extended to
the quantitative monitoring of cyber-physical systems?

Another important direction of future work is to understand the usability of stream
processing engines. The recent paper of Vaziri et al [92], where they present streams
as spreadsheets and streaming computations as spreadsheet functions, demonstrates the
great potential impact of research in this area. Debugging tools such as RegexBuddy (http:
//www.regexbuddy.com/) might also be very useful in the context of DReX and QREs.

The computational triangle: evaluation, pre-conditions, expression inference. A func-
tion expression e maps input streams w to outputs d. There are three natural computational
problems in this setting:

1. Given e and w, compute d “ JeKpwq. This is the expression evaluation problem, and
we have studied this problem in detail in this thesis.

2. Given e and d, compute an input stream w such that JeKpwq “ d. This is the problem
of pre-image computation, and has immediate applications in static analysis. For con-
sistent DReX expressions, it can be shown that the pre-image computation problem is
PSPACE-complete.

3. Given w and d, compute some expression e such that JeKpwq “ d. This is the expression
inference problem, and has applications in simplifying end-user programming [61], and
in extracting models from black-box systems.

Various generalizations of the pre-image computation problem are also important: for
example, compute (some representation of) all input streams w such that d “ JeKpwq
satisfies some property ϕpdq. The static analysis of string transformations is very important
in computer security [67, 55, 94]. In this setting, the question typically being answered is
whether an encoder can ever generate ill-formed output, such as an unescaped backslash
character. The SMT-LIB standard has been extended with a theory of strings [29], and the
2016 edition of the SyGuS competition also included a track to learn string transformations

http://www.regexbuddy.com/
http://www.regexbuddy.com/


CHAPTER 10. CONCLUSION 140

from input-output examples [18]. Another prominent decision problem is that of equivalence-
checking: for QREs, depending on the domain, this problem is often undecidable [13]. For
DReX expressions this is decidable, but we have been unable to pin down the complexity: we
know that the equivalence of SSTs can be determined in PSPACE [10], but we are unable to
even show that the equivalence checking problem is NP-hard (either for DReX expressions or
for SSTs).

Query optimization. We have some evidence that mechanical query optimization is feasible
for QREs [20]: this includes opportunities to eliminate streaming composition by predicate-
and projection-pushdowns, and eliminating instances of the combine combinator by careful
expression rewriting. There is also a large body of work on equational reasoning for regular
expressions, for example [70], and it is conceivable that every regular expression equivalence
corresponds to a scheme to obtain equivalent QREs over a sufficiently rich universe of types
and operations.

The iteration combinator in our formalisms seems inherently sequential: a potential
area for further research seems to be in parallelizing or otherwise optimizing this construct,
perhaps by applying ideas from stream fusion [39] and improved algorithms from the area of
matching regular expressions [80].

Binary predicates, the group by statement, and sliding windows. The main limitation
we observed while trying to express the NEXMark and Linear Road benchmarks was the
lack of binary predicates, and the lack of a SQL-like group by statement. We would ideally
like to be express transformations such as einc, which labels all monotonically increasing
sub-sequences of the input stream w. It seems natural to express einc as:

einc “ chainpf,Σq, where

f “ px,yq ÞÑ

#

1 if x ď y, and
0 otherwise.

Unfortunately, the binary transformation px,yq ÞÑ 1px ď yq, where 1 is the indicator function
is inexpressible in our current formalism, and the expression above is not a well-formed
QRE. Including binary predicates makes the domain equivalence problem undecidable [42],
potentially making consistency checking and streaming evaluation difficult. The lack of binary
predicates would be somewhat compensated by the presence of a group by statement [20].
In particular, the combinator would be written as:

e “ map-collectpf, e, aggq,

where f : ΣÑ Keys is applied to each incoming element a of the input stream. Depending on
the value of the key k “ fpaq, a sub-stream wπk is formed, containing only those elements
whose key is k. The inner expression e is independently applied to each sub-stream wπk, and
the values produced by the sub-evaluators are accumulated by the aggregator function agg.
The combination of streaming composition and map-collect is very powerful: we are able to



CHAPTER 10. CONCLUSION 141

express all of the Linear Road and NEXMark benchmarks, but several technical challenges
remain. For example, the immediate semantic question is of determining the domain: is
the parent expression defined when JeKpwπkq is defined for all keys k, or is it defined when
there exists a key k such that e is defined for the sub-stream? Both choices lead to interesting
unsolved questions regarding regular languages over infinite alphabets.

Another extension we study in [20] is sliding windows. An example query would be to
compute the mean trading price of a stock over the last 180 days. While the sliding window
idiom is technically already expressible as a native QRE, it typically requires expressions whose
size is proportional to the window length, causing a blowup both in consistency checking
and evaluation.

First-match, last-match, and other semantic variations. We originally presented DReX
expressions e as defining relations, JeK Ď Σ˚ˆD, rather than functions JeK : Σ˚ Ñ D. We then
introduced the subclass of consistent expressions, and pointed out that consistent expressions
defined (partial) functions Σ˚ Ñ D. Another motive in defining consistent expressions was to
prevent some hard-to-parse anti-patterns from being easily expressible as DReX expressions.
For example, combinepe, fq can be naturally defined as a function whose domain is the
intersection of the domains of the sub-expressions e and f. Similarly, the expression e else f
can be alternatively defined as follows:

Je else fKpwq “

#

JeKpwq if JeKpwq ‰ K, and
JfKpwq otherwise,

evoking the idea of domain complementation (“apply f if e is undefined”). Matching extended
regular expressions (traditional regular expressions with first class complementation) is a dif-
ficult problem [81], and the consistency rules conveniently avoid the problems of intersection
(in combinepe, fq, the sub-expressions have equal domains) and domain complementations
(in e else f, e and f have disjoint domains). One concrete unresolved question is the follow-
ing: given a functional DReX expression e and an input stream w, what is the complexity
of computing JeKpwq? We are already aware of some lower bounds: in this sub-class, the
output length |JeKpwq| is potentially exponential in the expression size |e|, but this still leaves
open the possibility of efficient output-sensitive algorithms. Also recall that regular string
transformations are closed under function composition. If function composition is included
as a first-class combinator, then computing JeKpεq is PSPACE-complete [14].

There are several operators which, while not increasing expressive power, would be quite
useful in practical situations. The restrict combinator is a good example. Given an expression
e and a regular expression r, restrictpe, rq is defined as follows:

Jrestrictpe, rqKpwq “

#

JeKpwq if w P JrK, and
K otherwise.

Other similar extensions include providing ways to specify first-split, greedy-split, and other
disambiguation semantics that are commonly implemented by string processing tools such as
sed, AWK, and Perl. In all these cases, the complexity of evaluation is unclear.



CHAPTER 10. CONCLUSION 142

Generalizing the input domain. Throughout this thesis, we have used the words “stream”
and “string” interchangeably. The idea is that we always only see a finite prefix of even
(potentially) infinite streams, and it is sufficient if the query language is able to specify
properties of these finite prefixes. Perhaps a better view of streams is as ω-strings: there is
already some work on extending SSTs to this case [16]. Obtaining an expressively equivalent
combinator calculus for this class is an interesting open problem.

A related problem is in extending the idea of combinator-based programming to the input
domain of trees. We are particularly interested in trees as they naturally model data stored
in XML documents. DReX and QREs are expressively equivalent to the operational models of
SSTs and SSTTs respectively: over the input domain of trees, the appropriate machines to
target for expressive equivalence appears to be streaming tree transducers [12].



Bibliography

[1] Apache Storm. Available at http://storm.apache.org/.

[2] PipelineDB. Available at https://www.pipelinedb.com/.

[3] Daniel Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cherniack,
Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther Ryvkina,
Nesime Tatbul, Ying Xing, and Stanley Zdonik. The design of the Borealis stream
processing engine. In 2nd Biennial Conference on Innovative Data Systems Research,
CIDR 2005, pages 277–289, 2005.

[4] Daniel Abadi, Don Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey, Sang-
don Lee, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Aurora: A new model
and architecture for data stream management. The VLDB Journal, 12(2):120–139,
2003.

[5] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš Holík, Ahmed Rezine,
Phillip Rümmer, and Jari Stenman. String constraints for verification. In Armin Biere
and Roderick Bloem, editors, Computer Aided Verification, CAV 2014, pages 150–166.
Springer, 2014.

[6] Alfred Aho, John Hopcroft, and Jeffrey Ullman. A general theory of translation.
Mathematical Systems Theory, 3(3):193–221, 1969.

[7] Shaull Almagor, Udi Boker, and Orna Kupferman. What’s decidable about weighted
automata? In Tevfik Bultan and Pao-Ann Hsiung, editors, Automated Technology for
Verification and Analysis, ATVA 2011, pages 482–491. Springer, 2011.

[8] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In Proceedings of the 28th ACM Symposium on Theory of
Computing, STOC 1996, pages 20–29. ACM, 1996.

[9] Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers. In
Kamal Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2010), volume 8 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 1–12. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2010.

143

http://storm.apache.org/
https://www.pipelinedb.com/


BIBLIOGRAPHY 144

[10] Rajeev Alur and Pavol Černý. Streaming transducers for algorithmic verification of
single-pass list-processing programs. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, pages 599–610. ACM,
2011.

[11] Rajeev Alur and Loris D’Antoni. Streaming tree transducers. CoRR, abs/1104.2599,
2011. Preprint of [12].

[12] Rajeev Alur and Loris D’Antoni. Streaming tree transducers. In Artur Czumaj, Kurt
Mehlhorn, Andrew Pitts, and Roger Wattenhofer, editors, Proceedings of the 39th
International Colloquium on Automata, Languages, and Programming, Part II, ICALP
2012, pages 42–53. Springer, 2012.

[13] Rajeev Alur, Loris D’Antoni, Jyotirmoy Deshmukh, Mukund Raghothaman, and Yifei
Yuan. Regular functions and cost register automata. In 28th ACM/IEEE Symposium
on Logic in Computer Science, LICS 2013, pages 13–22, 2013.

[14] Rajeev Alur, Loris D’Antoni, and Mukund Raghothaman. DReX: A declarative language
for efficiently evaluating regular string transformations. In Proceedings of the 42nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
pages 125–137. ACM, 2015.

[15] Rajeev Alur and Jyotirmoy Deshmukh. Nondeterministic streaming string transducers.
In Luca Aceto, Monika Henzinger, and Jiří Sgall, editors, Proceedings of the 38th
International Colloquium on Automata, Languages, and Programming, Part II, ICALP
2011, pages 1–20. Springer, 2011.

[16] Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of infinite
strings. In Proceedings of the 27th ACM/IEEE Symposium on Logic in Computer Science,
LICS 2012, pages 65–74. IEEE Computer Society, 2012.

[17] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for
quantitative properties of data streams. In Peter Thiemann, editor, Programming
Languages and Systems: Proceedings of the 25th European Symposium on Programming,
ESOP 2016, pages 15–40. Springer, 2016.

[18] Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. SyGuS syntax
for SyGuS-COMP’16. Technical report, University of Pennsylvania, 2016. Available at
http://sygus.seas.upenn.edu/files/SyGuS-Syntax-SyGuSCOMP’16.pdf.

[19] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for
string transformations. In Proceedings of the Joint Meeting of the 23rd EACSL Annual
Conference on Computer Science Logic and the 29th Annual ACM/IEEE Symposium on
Logic in Computer Science, CSL-LICS 2014, pages 9:1–9:10. ACM, 2014.

[20] Rajeev Alur, Sanjeev Khanna, Zachary Ives, Konstantinos Mamouras, and Mukund
Raghothaman. StreamQRE: Modular specification and efficient evaluation of quantita-
tive queries over streaming data. In submission, 2016.

http://sygus.seas.upenn.edu/files/SyGuS-Syntax-SyGuSCOMP'16.pdf


BIBLIOGRAPHY 145

[21] Rajeev Alur and Mukund Raghothaman. DecisionÂ problemsÂ forÂ additiveÂ regu-
larÂ functions. In Fedor Fomin, Rūsiņš Freivalds, Marta Kwiatkowska, and David Peleg,
editors, Proceedings of the 40th International Colloquium on Automata, Languages, and
Programming, Part II, ICALP 2013, pages 37–48. Springer, 2013.

[22] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

[23] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito,
Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom. STREAM: The Stanford
data stream management system. Technical Report 2004-20, Stanford InfoLab, 2004.

[24] Arvind Arasu, Shivnath Babu, and Jennifer Widom. CQL: A language for continuous
queries over streams and relations. In Proceedings of the 9th International Workshop
on Database Programming Languages, DBPL 2004, pages 1–19. Springer, 2004.

[25] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag Maskey, Esther
Ryvkina, Michael Stonebraker, and Richard Tibbetts. Linear Road: A stream data
management benchmark. In Proceedings of the 30th International Conference on Very
Large Data Bases, VLDB 2004, pages 480–491. VLDB Endowment, 2004.

[26] Christel Baier, Marcus Größer, and Frank Ciesinski. Model Checking Linear-Time Prop-
erties ofÂ Probabilistic Systems, pages 519–570. In [49].

[27] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic analysis
to validate sanitization in web applications. In 2008 IEEE Symposium on Security and
Privacy, SOSP 2008, pages 387–401, 2008.

[28] Roger Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng Hong. Consistent
streaming through time: A vision for event stream processing. In Proceedings of the 3rd
Biennial Conference on Innovative Data Systems Research, CIDR 2007, pages 363–374,
2007.

[29] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB standard: Version
2.5. Technical report, Department of Computer Science, The University of Iowa, 2015.
Available at http://www.SMT-LIB.org.

[30] Mikołaj Bojańczyk. Factorization forests. In Volker Diekert and Dirk Nowotka, editors,
Proceedings of the 13th International Conference on Developments in Language Theory,
DLT 2009, pages 1–17. Springer, 2009.

[31] Mikołaj Bojańczyk. Transducers with origin information. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Proceedings of the 41st
International Colloquium on Automata, Languages, and Programming, Part II, ICALP
2014, pages 26–37. Springer, 2014.

http://www.SMT-LIB.org


BIBLIOGRAPHY 146

[32] Matko Botinčan and Domagoj Babić. Sigma*: Symbolic learning of input-output spec-
ifications. In Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2013, pages 443–456. ACM, 2013.

[33] Lars Brenna, Alan Demers, Johannes Gehrke, Mingsheng Hong, Joel Ossher, Biswanath
Panda, Mirek Riedewald, Mohit Thatte, and Walker White. Cayuga: A high-
performance event processing engine. In Proceedings of the 2007 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2007, pages 1100–1102. ACM,
2007.

[34] Richard Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic
Quarterly, 6(1-6):66–92, 1960.

[35] Jianjun Chen, David DeWitt, Feng Tian, and Yuan Wang. NiagaraCQ: A scalable
continuous query system for internet databases. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, SIGMOD 2000, pages 379–
390. ACM, 2000.

[36] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark
Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry Peng, and
Paul Poulosky. Benchmarking streaming computation engines: Storm, Flink and Spark
streaming. In 1st Annual Workshop on Emerging Parallel and Distributed Runtime
Systems and Middleware, 2016.

[37] Michal Chytil and Vojtěch Jákl. Serial composition of 2-way finite-state transducers and
simple programs on strings. In Arto Salomaa and Magnus Steinby, editors, Proceedings
of the 4th Colloquium on Automata, Languages and Programming. Springer, 1977.

[38] Bruno Courcelle. Monadic second-order definable graph transductions. In Jean-
Claude Raoult, editor, Proceedings of the 17th Colloquium on Trees in Algebra and
Programming, volume 581, pages 124–144. Springer, 1992.

[39] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion: From lists
to streams to nothing at all. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007, pages 315–326. ACM, 2007.

[40] Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From
data stream to complex event processing. ACM Computing Surveys, 44(3):15:1–15:62,
2012.

[41] Loris D’Antoni and Rajeev Alur. Symbolic visibly pushdown automata. In Armin Biere
and Roderick Bloem, editors, Computer Aided Verification, CAV 2014, pages 209–225.
Springer, 2014.

[42] Loris D’Antoni andMargus Veanes. Equivalence of extended symbolic finite transducers.
In Natasha Sharyngina and Helmut Veith, editors, Computer Aided Verification, CAV
2013, pages 624–639. Springer, 2013.



BIBLIOGRAPHY 147

[43] Loris D’Antoni and Margus Veanes. Minimization of symbolic automata. In Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2014, pages 541–553. ACM, 2014.

[44] Joel de Guzman and Dan Nuffer. The Spirit parser library: Inline parsing in C++.
Dr. Dobb’s Journal, September 2003. Accessible at http://www.drdobbs.com/cpp/
the-spirit-parser-library-inline-parsing/184401692.

[45] Alan Demers, Johannes Gehrke, Mingsheng Hong, Mirek Riedewald, and Walker
White. Towards expressive publish/subscribe systems. In Yannis Ioannidis, Marc Scholl,
Joachim Schmidt, Florian Matthes, Mike Hatzopoulos, Klemens Boehm, Alfons Kemper,
Torsten Grust, and Christian Boehm, editors, Proceedings of the 10th International
Conference on Extending Database Technology, EDBT 2006, pages 627–644. Springer,
2006.

[46] Alan Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun Sharma,
and Walker White. Cayuga: A general purpose event monitoring system. In 3rd
Biennial Conference on Innovative Data Systems Research, CIDR 2007, pages 412–422,
2007.

[47] Jyotirmoy Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin, Garvit Ju-
niwal, and Sanjit Seshia. Robust online monitoring of signal temporal logic. In
Ezio Bartocci and Rupak Majumdar, editors, 6th International Conference on Runtime
Verification, RV 2015, pages 55–70. Springer, 2015.

[48] Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over real-
valued signals. In 8th International Conference on Formal Modeling and Analysis of
Timed Systems, FORMATS 2010, pages 92–106. Springer, 2010.

[49] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted
Automata. Monographs in Theoretical Computer Science. Springer, 2009.

[50] Calvin Elgot. Decision problems of finite automata design and related arithmetics.
Transactions of the American Mathematical Society, 98(1):21–51, 1961.

[51] Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Transactions on Computational Logic, 2(2):216–
254, April 2001.

[52] Georgios Fainekos and George Pappas. Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

[53] Philippe Flajolet and Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.

[54] Bryan Ford. Parsing expression grammars: A recognition-based syntactic foundation. In
Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2004, pages 111–122. ACM, 2004.

http://www.drdobbs.com/cpp/the-spirit-parser-library-inline-parsing/184401692
http://www.drdobbs.com/cpp/the-spirit-parser-library-inline-parsing/184401692


BIBLIOGRAPHY 148

[55] Vijay Ganesh, Adam Kieżun, Shay Artzi, Philip Guo, Pieter Hooimeijer, and Michael
Ernst. HAMPI: A string solver for testing, analysis and vulnerability detection. In
Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification, pages
1–19. Springer, 2011.

[56] Bjørn Bugge Grathwohl, Fritz Henglein, Ulrik Terp Rasmussen, Kristoffer Aalund
Søholm, and Sebastian Paaske Tørholm. Kleenex: Compiling nondeterministic
transducers to deterministic streaming transducers. In Proceedings of the 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,
pages 284–297. ACM, 2016.

[57] Michael Greenwald and Sanjeev Khanna. Data Stream Management: Processing High-
Speed Data Streams, chapter Quantiles and Equi-depth Histograms over Streams, pages
45–86. Springer, 2016.

[58] Thomas Griffiths. The unsolvability of the equivalence problem for λ-free nondeter-
ministic generalized machines. Journal of the ACM, 15(3):409–413, July 1968.

[59] Ralph Griswold, James Poage, and Ivan Polansky. The SNOBOL 4 programming lan-
guage. Prentice-Hall, 1971.

[60] The Stanford STREAM Group. Stream query repository. Accessible at http://infolab.
stanford.edu/stream/sqr/, 2002.

[61] Sumit Gulwani. Automating string processing in spreadsheets using input-output
examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 317–330. ACM, 2011.

[62] Sumit Gulwani, William Harris, and Rishabh Singh. Spreadsheet data manipulation
using examples. Communications of the ACM, 55(8):97–105, 2012.

[63] Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views: Prob-
lems, techniques, and applications. In Bulletin of the Technical Committee on Data
Engineering, volume 18, pages 3–18. IEEE Computer Society, 1995.

[64] Eitan Gurari. The equivalence problem for deterministic two-way sequential transduc-
ers is decidable. In Proceedings of 21st Annual Symposium on Foundations of Computer
Science, pages 83–85. IEEE Computer Society, 1980.

[65] Philip Hazel. PCRE: Perl compatible regular expressions. Available at http://www.
pcre.org/, 1997.

[66] Martin Hirzel, Henrique Andrade, Buǧra Gedik, Gabriela Jacques-Silva, Rohit Khan-
dekar, Vibhore Kumar, Mark Mendell, Howard Nasgaard, Scott Schneider, Robert
Soulé, and Kun-Lung Wu. IBM Streams Processing Language: Analyzing big data in
motion. IBM Journal of Research and Development, 57(3/4):7:1–7:11, 2013.

http://infolab.stanford.edu/stream/sqr/
http://infolab.stanford.edu/stream/sqr/
http://www.pcre.org/
http://www.pcre.org/


BIBLIOGRAPHY 149

[67] Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus
Veanes. Fast and precise sanitizer analysis with BEK. In Proceedings of the 20th
USENIX Conference on Security, SEC 2011. USENIX Association, 2011.

[68] H. V. Jagadish, Inderpal Singh Mumick, and Abraham Silberschatz. View maintenance
issues for the chronicle data model (extended abstract). In Proceedings of the 14th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS
1995, pages 113–124. ACM, 1995.

[69] Kevin Knight and Jonathan May. Applications of Weighted Automata in Natural Lan-
guage Processing, pages 571–596. In [49].

[70] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, 1994.

[71] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complexity, 8(1):21–49, 1999.

[72] Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. In Werner Kuich, editor, Automata, Languages and Program-
ming, ICALP 1992, pages 101–112. Springer, 1992.

[73] Manfred Kufleitner. A proof of the factorization forest theorem. CoRR, abs/0710.5130,
2007.

[74] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for
the real world. Technical Report UU-CS-2001-35, Departement of Computer Science,
Universiteit Utrecht, 2001.

[75] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter Tucker. Semantics and
evaluation techniques for window aggregates in data streams. In Proceedings of the
2005 ACM SIGMOD International Conference on Management of Data, SIGMOD 2005,
pages 311–322. ACM, 2005.

[76] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. A
DPLL(T) theory solver for a theory of strings and regular expressions. In Armin Biere
and Roderick Bloem, editors, Computer Aided Verification, CAV 2014, pages 646–662.
Springer, 2014.

[77] Gennady Makanin. The problem of solvability of equations in a free semigroup.
Mathematics of the USSR-Sbornik, 32(2):129–198, 1977.

[78] James Munro and Michael Paterson. Selection and sorting with limited storage. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science, SFCS
1978, pages 253–258. IEEE Computer Society, 1978.

[79] S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science. Now Publishers Inc, 2005.



BIBLIOGRAPHY 150

[80] Gene Myers. A four russians algorithm for regular expression pattern matching.
Journal of the ACM, 39(4):430–448, April 1992.

[81] Grigore Roşu. An effective algorithm for the membership problem for extended
regular expressions. In Helmut Seidl, editor, Foundations of Software Science and
Computational Structures: 10th International Conference, FOSSACS 2007, pages 332–
345. Springer, 2007.

[82] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and
Dawn Song. A symbolic execution framework for JavaScript. In 2010 IEEE Symposium
on Security and Privacy, SOSP 2010, pages 513–528, 2010.

[83] Imre Simon. Factorization forests of finite height. Theoretical Computer Science,
72(1):65–94, 1990.

[84] Rishabh Singh and Sumit Gulwani. Learning semantic string transformations from
examples. Proceedings of the VLDB Endowment, 5(8):740–751, 2012.

[85] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 3 edition,
2012.

[86] Richard Stearns and Harry Hunt. On the equivalence and containment problems
for unambiguous regular expressions, grammars, and automata. In 22nd Annual
Symposium on Foundations of Computer Science, SFCS 1981, pages 74–81, 1981.

[87] Douglas Terry, David Goldberg, David Nichols, and Brian Oki. Continuous queries
over append-only databases. In Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, SIGMOD 1992, pages 321–330. ACM, 1992.

[88] Attributed to Abigail. Reduction of 3-CNF-SAT to Perl regular expression matching.
Available at http://perl.plover.com/NPC/NPC-3SAT.html.

[89] Boris Trakhtenbrot. Finite automata and the logic of one-place predicates. Siberian
Mathematical Journal, 3:101–131, 1962.

[90] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. NEXMark: A bench-
mark for queries over data streams. Available at http://datalab.cs.pdx.edu/
niagara/NEXMark/, 2002.

[91] Peter Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Exploiting punctuation
semantics in continuous data streams. IEEE Transactions on Knowledge and Data
Engineering, 15(3):555–568, 2003.

[92] Mandana Vaziri, Olivier Tardieu, Rodric Rabbah, Philippe Suter, and Martin Hirzel.
Stream processing with a spreadsheet. In Richard Jones, editor, Proceedings of the 28th
European Conference on Object-Oriented Programming, ECOOP 2014, pages 360–384.
Springer, 2014.

http://perl.plover.com/NPC/NPC-3SAT.html
http://datalab.cs.pdx.edu/niagara/NEXMark/
http://datalab.cs.pdx.edu/niagara/NEXMark/


BIBLIOGRAPHY 151

[93] Margus Veanes and Nikolaj Bjørner. Symbolic automata: The toolkit. In Cormac
Flanagan and Barbara König, editors, Proceedings of the 18th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2012,
pages 472–477. Springer, 2012.

[94] Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj
Bjorner. Symbolic finite state transducers: Algorithms and applications. In Proceedings
of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012, pages 137–150. ACM, 2012.

[95] Margus Veanes, Todd Mytkowicz, David Molnar, and Benjamin Livshits. Data-parallel
string-manipulating programs. In Proceedings of the 42nd Annual Symposium on Prin-
ciples of Programming Languages, POPL 2015, pages 139–152. ACM, 2015.

[96] EugeneWu, Yanlei Diao, and Shariq Rizvi. High-performance complex event processing
over streams. In Proceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2006, pages 407–418. ACM, 2006.

[97] Yifei Yuan. High-level abstractions for programming network policies. PhD thesis, Uni-
versity of Pennsylvania, 2016.

[98] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the
9th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2012,
pages 15–28. USENIX Association, 2012.

[99] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. Discretized streams: Fault-tolerant streaming computation at scale. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles, SOSP 2013,
pages 423–438. ACM, 2013.

[100] Yunhi Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A Z3-based string solver
for web application analysis. In Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pages 114–124. ACM, 2013.


