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ABSTRACT 

 

INTERFACE ENGINEERING TO CONTROL CHARGE TRANSPORT IN COLLOIDAL 

SEMICONDUCTOR NANOWIRES AND NANOCRYSTALS 

David K. Kim 

Cherie R. Kagan 

Colloidal semiconductor nanocrystals (NCs) are a class of materials that has 

rapidly gained prominence and has shown the potential for large area electronics.  

These materials can be synthesized cheaply and easily made in high quality, with 

tunable electronic properties.  However, evaluating if colloidal nanostructures can be 

used as a viable semiconducting material for large area electronics and more complex 

integrated circuits has been a long standing question in the field.  When these materials 

are integrated into solid-state electronics, multiple interfaces need to be carefully 

considered to control charge transport, these interfaces are the:  metal 

contact/semiconductor, dielectric/semiconductor and the nanocrystal surface.   

Here, we use colloidal nanowire (NW) field-effect transistors (FETs) as a model 

system to understand doping and hysteresis.  Through controllable doping, we 

fabricated PbSe NW inverters that exhibit amplification and demonstrate that these 

nanostructured materials could be used in more complex integrated circuits.  By 

manipulating the dielectric interface, we are able to reduce the hysteresis and make 
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low-voltage, low-hysteresis PbSe NW FETs on flexible plastic, showing the promise of 

colloidal nanostructures in large area flexible electronics.  In collaboration, we are able 

to fabricate high-performance CdSe NC FETs through the use of a novel ligand, 

ammonium thiocyanate to enhance electronic coupling, and extrinsic atom in indium to 

dope and passivate surface traps, to yield mobilities exceeding 15 cm2V-1s-1.  Combining 

high-mobility CdSe NC FETs with our low-voltage plastic platform, we were able to 

translate the exceptional devices performances on flexible substrates.  This enables us 

to construct, for the first time, nanocrystal integrated circuits (NCICs) constructed from 

multiple well-behaved, high-performance NC-FETs. These transistors operate with small 

variations in device parameters over large area in concert, enabling us to fabricate NCIC 

inverters, amplifiers and ring oscillators.  Device performance is comparable to other 

emerging solution-processable materials, demonstrating that this class of colloidal NCs 

as a viable semiconducting material for large area electronic applications.   
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CHAPTER 1: Introduction 

1-1: Semiconductors 

Since the invention of the germanium transistor in 1947 by Shockley, Bardeen 

and Brattain, research and development of electronic devices has grown tremendously 

and into one of the largest industries in the world.  The class of materials that has been 

largely responsible for this rapid advancement is semiconductors, materials that have a 

tunable electrical resistivity (generally ranging from 10-2 to 109 ohm-cm) through precise 

control over the carrier concentration.  In addition, the current conduction through 

semiconductors can be modulated over a large range by injected charge carriers, 

whether in the form of light, impurities or electrical gating.   From the single germanium 

transistor that amplified small currents for telephone use to the highly complex 

integrated silicon circuits used in our computer for processing, semiconductor 

technology is now present in nearly every aspect of our daily lives.   

Since semiconductors are integral in the advancement of modern electronics, it 

is only natural that a significant amount of research be devoted to the exploration, 

fundamental study and development of new and existing semiconductor materials.  By 

judiciously cataloguing the library of semiconductors, these materials have been 

appropriately selected and optimized for their device technology, such as lead selenide 

for infrared sensing, germanium arsenide for light emitting diodes, amorphous silicon 

for liquid crystal displays and silicon for integrated circuits.  With new applications and 

creative device functionalities emerging every day, it is unlikely that a single 
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semiconductor material, or even a class of materials, will be able to universally address 

every current and future need.   

In particular, over the past two decades, there has been intense industrial 

demand and academic research interest in the field of large-area electronics: devices 

that can be cheaply and easily made in high quality, with tunable material’s properties 

(such as electrical, optical, thermal and/or magnetic).1–4  The materials that are treated 

in this thesis focuses on colloidal semiconductor nanocrystals (NCs) and its derivative, 

colloidal nanowires, a class of materials that has rapidly gained prominence over the last 

two decades, and has shown the potential to address the needs of large area 

electronics.  Chapter 1 will begin with a brief introduction to colloidal semiconductor 

NCs, explaining basic synthesis and unique size-dependent properties that arises from 

quantum confinement.  Next, the impact surface bound ligands have on charge 

transport between NCs and methods that have been employed to enhance electronic 

coupling will be discussed.   Finally, an outline of the thesis will be presented at the end 

of this chapter. 

 

1-2: Colloidal Semiconductor Nanocrystals 

Semiconductor NCs, zero-dimensional semiconductor structures with 

nanometer-scale dimensions, are tiny crystals of semiconductors that are on the scale of 

a nanometer.  Depending on the chemical composition, shape and size of the NC, at 

small enough sizes, the wavefunctions in these NCs start to feel quantum-size effects 
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owing to the confinement in three directions, and can also be called quantum dots.5–7  

In this regime, the electronic structure of the quantum dots can be tuned, giving rise to 

very unique properties.  This size-dependent phenomenon can be understood by 

adapting the model of the Linear-Combination-of-Atomic-Orbitals8,9 to NCs.10 

 

Figure 1-1:  Evolution from a single set of sigma (σ) and sigma* (σ*) bonding orbitals, to 
discrete molecular orbitals into a continuous energy band. 

When two atoms are brought together, the atomic orbitals combine to form two sets of 

bonding orbitals: the sigma (σ) bonding and sigma star (σ*) antibonding orbitals, with 

electrons residing in the σ bond.  As the number of atoms and size of the NC grows 

(Figure 1-1), the single atomic orbital continues splitting to form discrete molecular 

orbitals, with σ making up the highest-occupied-molecular orbital (HOMO) and σ* 

making up the lowest-unoccupied-molecular orbital (LUMO).  This can be taken to the 
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limit of a bulk solid, where the molecular orbitals become a continuous energy band, 

with the LUMO forming the conduction band and HOMO forming the valence band.  In 

the case of a semiconductor, there exists a forbidden energy gap, which is a material 

dependent band-gap that is typically on the order of 1 – 3 electron volts.  Quantum dots 

fall in the intermediate category between molecules and bulk, still displaying discrete 

quantized energy states, but exhibiting a size-tunable energy gap and electronic 

structure.  The size at which quantum confinement occurs depends on the Bohr radius 

of the material’s bulk exciton (an excited electron-hole pair).  When semiconductors NCs 

become smaller than this value (for example: radii smaller than 6 nm for CdSe, 46 nm 

for PbSe, which are two very commonly studied NCs in the literature), the resulting 

exciton becomes delocalized and confined in all three dimensions.  At this point, the NC 

can be treated as a particle-in-a-box in three-dimensions, with the electron and hole 

(particles) bound within the NC (box) by the surface of the particle (infinite potential).  

In these quantum-confined systems, the electron and holes can be treated 

independently and can be described by separate hydrogenic wavefunctions that occupy 

discrete energy levels.  As such, the size-tunable bandgap arises from controlling the size 

of the “box”, with smaller NCs having larger bandgaps and larger NCs having smaller 

bandgaps.  These quantum dots have also been referred to as “artificial atoms,”11,12 

because of the atomic-like nature of their electronic wavefunctions and energy levels 

when quantum-confined. 
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Figure 7-5 is a schematic of the device structure we utilized.  All elements of the 

structure were defined by NIL, with the appropriate metal or insulator deposited for 

different layers.  CdSe NCs were solution-exchanged then spincast everywhere, but the 

SiO2 windows defined exact placement of NC thin films to form the sub-micron channel 

FETs.  Without the SiO2 windows, additional currents from the larger contact pads would 

swamp out the significantly smaller currents from the nanoelectrodes [Figure 7-6(A, B)].  

 

 
Figure 7-8:  Schematic of small scale devices with (A) non-isolated and (B) isolated 
semiconducting CdSe NC channels.  Optical images of spincast CdSe NC thin films on FET 
structures with SiO2 windows at (C) low and (D) high resolution.  The SiO2 window is 
necessary to define and isolate the semiconducting channel from the rest of the 
electrode, and ensures that the measured electrical current is arising from the 
nanometer channels, rather than the large contact pads. 

(A) (B) 

(C) (D) 
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We have made bottom-contact, CdSe NC-FETs with sub-micron channel lengths 

[Figure 7-6 (C, D)].  These devices show a modest mobility with current modulation over 

three orders of magnitude [Figure 7-7(A, B)]. 

 

Figure 7-9:  (A) ID-VDS and (B) ID-VG characteristics of CdSe NC FETs with channel lengths 
of ~200 nm and widths of ~200 nm to give a W/L ratio of 1.  In the future, the channel 
width to length ratio must also be redesigned to exceed a 10:1 ratio to avoid fringing of 
the electric field at the edges of the channel.  This will give rise to non-idealities and 
higher than expected mobility values.  Electrodes were fabricated atop a dielectric stack 
of 30 nm of Al2O3 and 10 nm of thermal SiO2 to give a total unit capacitance of about 
150 nF/cm2.  A channel length of 200 nm would allow a maximum oxide thickness of 20 
nm of SiO2, yielding a total unit capacitance of 172 nF/cm2.  In the future, the gate oxide 
will need to be redesigned with a higher dielectric constant or be thinner to increase the 
unit capacitance beyond 172 nF/cm2 for a 200 nm channel length device.  Otherwise, 
given a gate oxide with unit capacitance of 150 nF/cm2, the minimum allowable channel 
length would be 230 nm.  

Future work will involve applying this technique over large area and increasing 

the mobility to values observed in micron-length channels.  NIL also allows us to 

fabricate high resolution shapes and morphologies that can be investigated using this 

technique. 
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7-5: Mechanical Stability of Flexible Devices 

While we have shown that CdSe NC films translate well onto plastics in Chapter 

6, assessing the mechanical stability of these thin films is just as important.  Simply 

showing device performance of flexible substrates on a flat surface does not adequately 

take advantage of the bendability of plastic.  The ultimate goal is to have these devices 

be tightly rolled with a bending radii that is sub-millimeters, bent around sharp edges 

(e.g. to 100 µm) and repeatedly creased without significant device degradation.  

However, initial measurements on plastic substrates under both tension and 

compression suffer from a simultaneous increase in the threshold voltage, hysteresis 

and the sub-threshold swing.  In addition, when the substrate is returned to its normal 

flat position, even though the device still operates like an FET at low-voltages, we see 

that we have irreversibly damaged it and does not return to its pre-bent characteristics.  

We also collected the gate capacitance under both tension and compression, and realize 

it affected the estimation of carrier mobilities and threshold voltage.  The large 

mechanical strain also increased the leakage of the gate dielectric stack. 

This is a limitation not just confined to NC thin films, but is a problem more 

general to all thin-film transistors on flexible platforms.  It was recently reported by 

Someya23 for bending applications, devices and circuits need to be encapsulated with a 

thick enough passivation layer so that the semiconducting layer lies in a neutral strain 

position, where the bending induced by compression and tension cancel each other.   
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Future work will involve similarly encapsulating CdSe NC devices to ensure the 

film would not be subject to any strain, be highly stable to sharp and repetitive bending, 

and maintain its high performance.   We found that encapsulating plastic devices in a 

thin layer of ALD (50 nm of Al2O3), which was originally developed by Dr. Ji-hyuk Choi to 

passivate the device and allow operation in air, can also increase mechanical stability of 

these devices.  We will explore other commonly used passivation layers, such as 

parylene-C, CYTOPTM, and polyimide that could be readily used to scale up to thicker 

encapsulation films to match the thickness of flexible substrates.  
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CHAPTER 8: Concluding Remarks 

Evaluating if colloidal nanostructures can be used as a viable semiconducting 

material for large area electronics and more complex integrated circuits has been a long 

standing question in the field.  Over the twenty years, we have seen tremendous growth 

and understanding of charge transport in these quantum-confined systems.  With that 

knowledge, we have seen the successful demonstration of these nanostructured 

materials for a wide range of device technologies, ranging from field-effect transistors 

(FETs), thermoelectrics, photovoltaics and photodetectors.  In this thesis, we initially 

began with colloidal nanowire (NWs) FETs as a simple, but effective platform to further 

elucidate the role of interfaces on charge transport for successful device integration and 

the application of large-area electronics. 

In Chapter 2 and 3, we fabricated ambipolar, PbSe NW FETs to uncover their 

intrinsic electronic properties.  Great care was taken to avoid unintentional doping, and 

we were able to successfully identify oxygen and hydrazine as effective p and n-type 

dopants.  Combined with our understanding of the band-energy alignment at the metal-

semiconductor interface, we were able to control the carrier types, ranging from 

unipolar p-type, ambipolar to unipolar n-type.  Taking advantage of the control we have 

over the electronic properties in PbSe NW FETs, we fabricated the first PbSe NW 

inverters that show amplification and the initial demonstrations that these 

nanostructured materials could be used in more complex integrated circuits.   
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In Chapter 4, we used the same PbSe NW FET platform to further uncover its 

intrinsic properties and identify the causes of hysteresis in PbSe NW FETs.  PbSe 

nanostructures were found to not only be extremely sensitive to surface ligands and  

bound oxygen, but to surface non-stoichiometry, since as-synthesized PbSe 

nanostructures are known to have an excess amount of Pb on the surface. Non-

stoichiometry is being explored by our group as a means of doping in lead-chalcogenide 

nanostructures.  At the semiconductor-gate dielectric interface, we found that the 

presence of surface bound water only suppressed electron currents, but did not give 

rise to hysteresis.  We have identified that the semiconductor/dielectric interface is 

largely responsible for hysteresis and found that a surface modified gate dielectric stack 

[octadecylphosphonic acid (ODPA) self-assembled monolayers (SAMs) on Al2O3] exhibits 

low-hysteresis FET operation.  Exploration of alternative combinations of gate dielectric 

layers and SAM chemistries and/or surface modification of the NWs will be a useful tool 

to reduce hysteresis in other nanostructured systems.  Furthermore, we were able to 

scale down the dielectric stack on flexible substrates to show low-hysteresis and low-

voltage PbSe NW FET operation on plastics and demonstrate that this class of colloidal 

materials could be used in large area flexible electronics. 

In Chapter 5, in collaboration with the Kagan and Murray groups, as well as NIST, 

we were able to fabricate high-performance CdSe nanocrystal (NC) FETs.  Through the 

use of a novel ligand, ammonium thiocyanate, we drastically enhanced interparticle 

electronic coupling to form extended electronic states in NC solids.  Indium introduced 
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by thermal evaporation and diffusion, dopes and passivates the surface of CdSe NC 

solids, increasing the carrier concentration.  Using our knowledge of engineering 

dielectric interfaces, we reduced the trap density by using an Al2O3/SiO2 dielectric stack.  

These FETs exhibit mobilities exceeding 15 cm2V-1s-1, low subthreshold swing and an 

ION/IOFF >106.   Additionally, the use of non-corrosive ligand ammonium thiocyanate and 

mild annealing to promote indium diffusion is compatible with flexible electronics. 

Combining the high-mobility CdSe NC solids with our low-voltage plastic 

platform, we were able to translate the exceptional device performances on flexible 

substrates.  This enabled us to construct, for the first time, nanocrystal integrated 

circuits (NCICs) constructed from multiple well-behaved, high-performance NC-FETs. 

These transistors operate with small variations in device parameters over large area in 

concert. We demonstrated NCIC inverters, amplifiers and ring oscillators.  Device 

performance is comparable to other emerging solution-processable materials with 

similar channel lengths (40 µm) and low-voltage operation, demonstrating that this class 

of colloidal NCs as a viable semiconducting material for large area electronic 

applications.  With recent developments in our group to scale down these devices and 

minimize parasitic capacitance to further improve device performance in Chapter 7, 

plenty of work still needs to be done in order to realize the full potential of these 

materials.  With exciting new developments and discoveries in the field to inspire us 

every day, it is my hope that the work in this thesis will encourage others to do the 

same. 


