
APPENDIX

NP-COMPLETENESS PROOF FOR NORMALIZED CUT

Proposition 1 [Papadimitrou 97]. Normalized Cut (NCUT)

for a graph on regular grids is NP-complete.

Proof. We shall reduce NCUT on regular grids from

PARTITION:

. Given integers x1; x2; . . . ; xn adding to 2k, is there
a subset adding to k?

We construct a weighted graph on a regular grid that

has the property that it will have a small enough

normalized cut if and only if we can find a subset from

x1; x2; . . . ; xn adding to k. Fig. 18a shows the graph and

Fig. 18b shows the form that a partition that minimizes

the normalized cut must take.

In comparison to the integers x1; x2; . . . ; xn, M is much

larger, M > 2k2, and a is much smaller, 0 < a < 1=n. We

ask the question
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Fig. 15. A weighting function with slow rate of fall-off: w�x� � 1ÿ d�x�, shown in subplot (a) in solid line. The dotted lines show the two alternative
weighting functions used in Figs. 14 and 16. Subplot (b) shows the corresponding graph weight matrix WW . The two columns (c) and (d) below show
the first, and second extreme eigenvectors for the Normalized cut (row 1), Average cut (row 2), and Average association (row 3). In this case, both
normalized cut and average association give the right partition, while the average cut has trouble deciding on where to cut.



. Is there a partition with Ncut value less than 4an
cÿ1=c ,

where c is half the sum of edge weights in the

graph, c � 2M�n� 1� � k� 3a n.

We shall see that a good Ncut partition of the graph must

separate the left and right columns. In particular, if and

only if there is a subset S1 � fx1; . . . ; xmg adding to k, by

taking the corresponding edges in the middle column to

be in one side of the partition, as illustrated in Fig. 18b,

we achieve an Ncut value less than 4an
cÿ1=c . For all other

partitions, the Ncut value will be bounded below by

4an
cÿ1=c .

First, let us show that the cut illustrated in Fig. 18b,

where each side has a subset of middle column edges

x1; x2; . . . ; xn that add up to k, does have Ncut value less

than 4a n
cÿ1=c . Let the ncut� be the Ncut value for this cut. By

using the formula for Ncut (2.2), we can see that
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Fig. 16. A weighting function with medium rate of fall-off: w�x� � eÿd�x�0:2 , shown in subplot (a) in solid line. The dotted lines show the two alternative
weighting functions used in Figs. 14 and 15. Subplot (b) shows the corresponding graph weight matrix WW . The two columns (c) and (d) below show
the first and second extreme eigenvectors for the Normalized cut (row 1), Average cut (row 2), and average association (row 3). All three of these
algorithms perform satisfactorily in this case, with normalized cut producing a clearer solution than the other two cuts.



ncut� � 4an

2c� 2a n�2k1 ÿ 1� �
4a n

2cÿ 2a n�2k1 ÿ 1� ;

where c is half the total edge weights in the graph,

c � 2M�n� 1� � k� 3a n, and k1n and �1ÿ k1�n are the

number of edges from the middle column on the two

sides of the graph partition, 0 < k1 < 1. The term

a n�2k1 ÿ 1� can be interpreted as the amount of

imbalance between the denominators in the two terms

in the Ncut formula and lies between ÿ1 and �1 (since

0 < an < 1). Simplifying, we see that

ncut� � 4a n c

c2 ÿ �a n�2k1 ÿ 1��2 <
4a n c

c2 ÿ 1
� 4a n

cÿ 1=c
:

as was to be shown.

To complete the proof we must show that all other

partitions result in a Ncut greater than or equal to 4a n
cÿ1=c .

Informally speaking, what will happen is that either the

numerators of the terms in the Ncut formulaÐthe cut

become too large, or the denominators become signifi-

cantly imbalanced, again increasing the Ncut value. We

need to consider three cases:

1. A cut that deviates from the cut in 1(b) slightly by

reshuffling some of the xi edges so that the sums

of the xi in each subset of the graph partition are

no longer equal. For such cuts, the resulting Ncut

values are, at best, ncut1 � 2a n
c�x � 2a n

cÿx � 4a n c
c2ÿx2 . But,

since x � 1, we have ncut1 � 4a n c
c2ÿ1 � 4a n

cÿ1=c .

2. A cut that goes through any of the edges with

weight M. Even with the denominators on both

sides completely balanced, the Ncut value

ncut2 � 2M
c is going to be larger than 4a n

cÿ1=c . This

is ensured by our choice in the construction that

M > 2k2. We have to show that

2M

c
� 4a n

cÿ 1=c
; or

M � 2a n
c2

c2 ÿ 1
:

This is direct, since a n < 1 by construction, c2

c2ÿ1 �
81
80 (using k � 1, M � 2, c � 9).

3. A cut that partitions out some of the nodes in the

middle as one group. We see that any cut that

goes through one of the xis can improve its Ncut

value by going through the edges with weight a

instead. So, we will focus on the case where the

cut only goes through the weight a edges.

Suppose that m edges of xis are grouped into

one set, with total weight adding to x, where

1 < x < 2k. The corresponding ncut value,

ncut3�m� � 4a m

4a m� 2x

� 4a m

8M�n� 1� � 4k� 12a nÿ 4a mÿ 2x

� 2a m

cÿ dm �
2a m

c� dm ;

where
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Fig. 17. Normalized cut and average association result on the zebra image in Fig. 10. Subplot (a) shows the second largest eigenvector of
Wx � �Dx, approximating the normalized cut vector. Subplots (b)-(e) show the first to fourth largest eigenvectors of Wx � �x, approximating the
average association vector, using the same graph weight matrix. In this image, pixels on the zebra body have, on average, lower degree of
coherence than the pixels in the background. The average association, with its tendency to find tight clusters, partitions out only small clusters in the
background. The normalized cut algorithm, having to balance the goal of clustering and segmentation, finds the better partition in this case.



dm � 2M�n� 1� � k� 3a nÿ 2a mÿ x
> 2M�n� 1� ÿ k� 3a nÿ 2am

� xl:

The lower bound on ncut3�m� � 4a m c
c2ÿd2

m
is then

ncutl�m� � 4a m c
c2ÿx2

l

. Further expansion of the

ncutl�m� yields

ncutl�m� � 4a m c

c2 ÿ x2
l

� 4a m c

c2 ÿ �Bÿ 2am�2 ;

where B � 2M�n� 1� ÿ k� 3a n

� 4a c
c2ÿB2

m ÿ 4a2 m� 4a B
:

One can check to see that ncutl�m� is a non-

decreasing function and has its minimum at
4a c

�c2ÿB2��4a Bÿ4a2 when m � 1.

In order to prove that ncutl�m� > 4a n
cÿ1=c , we

need to establish the inequality

4a c

�c2 ÿB2� � 4a Bÿ 4a2
� 4a n c

c2 ÿ 1
or

1

�c2 ÿB2� � 4a Bÿ 4a2
� n

c2 ÿ 1
or

��c2 ÿB2� � 4a Bÿ 4a2�n � c2 ÿ 1 or

�4c kÿ 4k2�n� 4a n�cÿ 2kÿ a� � 1 � c2;

using the fact that c � B� 2k. To continue, note

that, since an < 1, this will be true if

�4c kÿ 4k2�n� 4�cÿ 2k� ÿ 4a� 1 � c2 or if

4c k2 � 4cÿ �4k3 � 8k� 4aÿ 1� � c2;

since n < k. Since 4k3 � 8k� 4aÿ 1 > 0, we only

need to show that 4c k2 � 4c < c2 or that

c > 4�k2 � 1�. This is so because c � 2M�n� 1� �
k� 3a n and M > 2k2. tu
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