The Downward Spiral

Jeremy Greenwood  
*University of Pennsylvania, jeremygr@sas.upenn.edu*

Nezih Guner  
*ICREA, Universitat Autonoma de Barcelona, nezih.guner@movebarcelona.eu*

Karen A. Kopecky  
*Federal Reserve Bank of Atlanta, Emory University, karen.kopecky@atl.frb.org*

Follow this and additional works at: [https://repository.upenn.edu/psc_publications](https://repository.upenn.edu/psc_publications)

Part of the [Chemicals and Drugs Commons](https://repository.upenn.edu/psc_publications), [Demography, Population, and Ecology Commons](https://repository.upenn.edu/psc_publications), [Family, Life Course, and Society Commons](https://repository.upenn.edu/psc_publications), and the [Medicine and Health Commons](https://repository.upenn.edu/psc_publications)

**Recommended Citation**

This paper is posted at ScholarlyCommons. [https://repository.upenn.edu/psc_publications/83](https://repository.upenn.edu/psc_publications/83)  
For more information, please contact repository@pobox.upenn.edu.
The Downward Spiral

Abstract
There have been more than 500,000 opioid overdose deaths since 2000. To analyze the opioid epidemic, a model is constructed where individuals, with and without pain, choose whether to misuse opioids knowing the probabilities of addiction and dying. These odds are functions of opioid use. Markov chains are estimated from the US data for the college and non-college educated that summarize the transitions into and out of opioid addiction as well as to a deadly overdose. A structural model is constructed that matches the estimated Markov chains. The epidemic’s drivers, and the impact of medical interventions, are examined.

Keywords
addiction, college/non-college educated, deaths, fentanyl, Markov chain, medical interventions, opioids, OxyContin, pain, prices, structural model

Disciplines
Chemicals and Drugs | Demography, Population, and Ecology | Family, Life Course, and Society | Medicine and Health | Social and Behavioral Sciences
Abstract

There have been more than 500,000 opioid overdose deaths since 2000. To analyze the opioid epidemic, a model is constructed where individuals choose whether to use opioids recreationally, knowing the probabilities of addiction and dying. These odds are functions of recreational opioid usage. Markov chains are estimated from the US data for the college and non-college educated that summarize the transitions into and out of opioid addiction as well as to a deadly overdose. The structural model is constructed to match the estimated Markov chains. The epidemic’s drivers and the impact of medical interventions are examined.

Keywords: addiction, college/non-college educated, deaths, fentanyl, Markov chain, medical interventions, opioids, OxyContin, pain, prices, state-contingent preferences, structural model, subjective and objective beliefs

JEL Nos: D11, D12, E13, I12, I14, I31, J11, J17
Figure 1: Opioid deaths for both the non-college and college educated as measured per 100,000 people in the respective education class.

1 Opening

1.1 Some Background

In 2019 the age-adjusted death rate from an opioid overdose was 21.6 per 100,000 people. This compares with 12.9 deaths from kidney disease, 14.2 from suicides, 14.7 from influenza, 21.6 from diabetes, and 161.5 from heart disease (the leading cause of death in the United States). Opioid overdose deaths place in the top 10 leading causes of death in the United States. As can be seen from Figure 1, most of these opioid deaths arose from prescription (Rx) overdoses prior to 2015, but afterward they came from synthetic opioids—in particular, fentanyl. From 2000 to 2019, the overdose death rate was five to seven times higher for those without a college degree compared to those who had one. The rise in the death rate from synthetic opioids is particularly marked for the non-college educated population.

Surprisingly, this is not the first opioid epidemic in the United States. Morphine was distilled from opium in 1804 by the German chemist F.W.A. Sertürner. Merck started selling it in 1827. In the later part of the 19th century, opium and morphine were widely available in the United States. Morphine was used in the Civil War to control the pain suffered by soldiers. Based on surveys of pharmacists and physicians, maintenance records for addicts, military medical examinations, and opiate imports, Courtwright (2001) estimates that there were 0.72 addicts per 1,000 population in 1842 and perhaps as much as 4.59 in the 1890s. Table 1 reports a selection of surveys answered by pharmacists about the number of addicted customers who visited their dispensaries.

The root of most morphine addictions in the late 1800s was prescriptions by physicians.

---

1 The sources for all the data displayed in the figures are presented in Appendix A.
2 In 1810 he issued a prophetic warning: “I consider it my duty to attract attention to the terrible effects of this new substance in order that calamity may be averted.”
Table 1: Surveys of Pharmacists, 1880-1903

<table>
<thead>
<tr>
<th>Year</th>
<th>Place</th>
<th>Addicts/Store</th>
<th>Addicts/1,000 pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>1880</td>
<td>Chicago</td>
<td>4.70</td>
<td>2.09-2.54</td>
</tr>
<tr>
<td>1885</td>
<td>Iowa towns</td>
<td>1.91</td>
<td>0.85-1.03</td>
</tr>
<tr>
<td>1902</td>
<td>Eastern cities and towns</td>
<td>4.00</td>
<td>1.78-2.16</td>
</tr>
</tbody>
</table>

*Source: Courtwright (2001, Table 1)*

The modal addict was a middle/upper-class, 37-year-old, white housewife. While morphine was routinely prescribed for a wide range of ailments, it was used for women’s health issues such as dysmenorrhea and afflictions such as anxiety/depression and headaches that disproportionately affected women. Aspirin wasn’t invented until 1899. Morphine may have served as a substitute for alcohol since it was unfitting at the time for a woman to drink. Figure 2 displays an ad for a children’s teething pain formula that contained morphine. Heroin was introduced as a cough suppressant in 1898. In the early 1900s the prototypical heroin addict was a lower-class white male in his early twenties. Addiction was viewed by the general public as a problem. The US Congress passed the Harrison Narcotics Act in 1914 to control the distribution of opioids.³

What caused the recent epidemic? Protracted pain diminishes the value of life. In the 1990s, physicians rethought the need to manage pain. This led to the view that doctors were underprescribing pain killers, such as morphine, epitomized by a 1990 article in *Scientific American* titled “The Tragedy of Needless Pain.” Ronald Melzack, a psychology professor, wrote

> “Yet the fact is that when patients take morphine to combat pain, it is rare to see addiction—which is characterized by a psychological craving for a substance and, when the substance is suddenly removed, by the development of withdrawal symptoms (for example, sweating, aches and nausea). Addiction seems to arise only in some fraction of morphine users who take the drug for its psychological effects, such as its ability to produce euphoria and relieve tension.” Melzack (1990, p. 27).

Drug companies moved onto the new landscape.

In 1996 Purdue Pharma introduced OxyContin with an aggressive marketing campaign.⁴ “Oxy” came from the opioid-based painkiller oxycodine, and “Contin” meant continuous. Purdue Pharma asserted that because the drug released its effect in a prolonged, slow, and

---

³ Courtwright (2001) believes that government officials and politicians exaggerated the epidemic in order to pass the legislation.

⁴ Among other things, Purdue Pharma staged all-expenses-paid informational seminars at resort locations in Arizona, California, and Florida for somewhere between 2,000 and 3,000 physicians—Meier (2018, p. 78).
Figure 2: The left panel shows an 1885 ad for a children’s teething syrup that contained alcohol and morphine. An ad for OxyContin is shown in the right panel.

The rate of addiction was less than one percent.\(^5\) The Food and Drug Administration (FDA) allowed Purdue Pharma to make the claim in its marketing campaigns that “(d)elayed absorption, as provided by OxyContin tablets, is believed to reduce the abuse liability of a drug”–Meier (2018, p. 76). Figure 2 displays an ad for OxyContin that notes the most common side effects are “constipation, nausea and somnolence.” The pills were open to abuse by those with or without pain. After the slow-release coating was removed, they could be crushed and then either snorted or mixed with water and injected. When heroin came online in the early 1900s, it was claimed to be: “‘Safe and Reliable,’ ‘addiction scarce be possible,’ and the ‘absence of danger of acquiring the habit.’”–Courtwright (2001, p 91).

Starting around the year 2000, there was a dramatic increase in number of opioid prescriptions per person for both the college- and non-college-educated populations, as shown in Figure 3. The non-college educated were much more likely to have an opioid prescription than the college educated. The former often work in occupations involving physical labor. Additionally, the amount of Rx opioids consumed, conditional on a prescription, also rose. Again, this was particularly true for those without a college degree. The price of prescription opioids has fallen dramatically since 2000. Figure 4 shows that the out-of-pocket expense for prescription opioids has fallen by a factor of 3 since 2001. This price decline has been attributed to two factors: First, the advent of generic prescription opioids. Second, the expansion of social programs such as Medicare and Medicaid that subsidized the purchase of

\(^5\)This assertion was based upon a one paragraph letter to the *New England Journal of Medicine* in 1980 titled “Addition Rare in Patients Treated with Narcotics.” The letter was based upon patients who were hospitalized mostly for short stays at the time of treatment. No supporting evidence was provided by the two correspondents.
opioids, as can be seen from Figure 5. Medicaid funds a smaller portion of opioid purchases than private payers for college-educated individuals while the reverse is true for the non-college educated. The share of opioids prescriptions funded by the government grew from 17 percent in 2001 to 60 percent in 2010. The vast majority of opioids were prescribed to people who needed relief from pain caused by either disability or illness.

Over the same period, the street price of opioids dropped by a factor of 3. This has been chalked up to the illegal imports of inexpensive powerful synthetic opioids, for example fentanyl, from China and elsewhere. Additionally, opioids have been diverted from legal sources onto the black market via fraudulent prescription, family and friends giving away and/or selling their prescriptions, and theft. The rise of illegal imports is ascribed to the tightening of prescriptions and the introduction of a tamper-proof form of OxyContin. The upshot is that opioids are much less expensive now than they were in 2001. Likewise, the introduction of low-cost heroin at the beginning of the 20th century was due to the banning of smoking opioids and the increased restrictions on cocaine usage.

1.2 What’s Done Here

A model is developed where some people use recreational opioids and others don’t. There are two routes to recreational opioid usage: some individuals start off as nonusers who decide to experiment with opioids, while others begin using prescription opioids to reduce pain and then decide that they like them. Individuals who misuse opioids, through either experimentation or as pain killers, can end up as addicts. Addicts face the possibility of death. The probabilities of addiction and death depend upon the extent of opioid usage. The extensive margin decision to misuse opioids in the first place and the intensive margin
Figure 4: Price of prescription opioids for both the non-college- and college-educated populations. The series have been normalized so that the out-of-pocket price for the non-college educated is 1.0 in 2001.

Figure 5: Primary payer by morphine milligram equivalents (MME’s). The left panel is for the non-college educated while the right panel is for the college educated.
decision for the amount of opioids used are both endogenous. Opioid abusers and addicts may also choose whether to work or not. This decision is a function of how opioid usage affects a person, which varies across individuals. The choices about opioid usage and work depend on: idiosyncratic predilections toward opioid usage; incomes; the chance of experiencing pain; the odds of how opioid usage affects becoming an addict and dying; abuser’s and addict’s individualized inclinations to work; and the street price of opioids. For the most part, a person makes fully rational decisions, while cognizant about the chances of becoming unemployed, addicted, and dying. In the quantitative analysis, people’s subjective beliefs in the early stage of the crisis about the probability of opioid addiction are allowed to differ from the objective probability. Stops in opioid usage can occur.

The model is calibrated to the US data on opioid usage. This is done for both the non-college- and college-educated segments of the population. Data taken from the Medical Expenditure Panel Survey and the National Survey of Drug Use and Health are used to tabulate the number of nonusers, prescription users, misusers, and addicts. Data are also collected on the opioid dosages used by prescription users, misusers, and addicts. The fractions of misusers and addicts who are unemployed are also calculated. Information on the prices for prescription and black market opioids is also collected. A key step in the calibration exercise is the estimation of Markov chains for the college- and non-college-educated populations. These Markov chains specify conditional probabilities such as the odds of a nonuser or a prescription user becoming an opioid abuser, the probability of an abuser making the transition to an addict, and the chance that an addict will die. The output from the model is then matched up with the results from the estimated Markov chains. A
check on the calibration is performed by comparing the evidence on cross-state differences in prescription access to OxyContin and opioid deaths with the model’s predicted relationship between prescription access and deaths.

The calibrated model is then used to highlight the forces underlying the recent opioid epidemic. Through the eyes of the model, there are three key forces. The first force is the decline in prices for both prescription and black market opioids. This had a big effect. The second force is the increase in death rates of addicts due to a shift in opioid consumption towards fentanyl. This also had a significant impact. Third, early on in the crisis, people might have underestimated the risk of becoming addicted from opioid usage. This appears to have been a powerful driver of opioid usage in the initial stages of the crisis. The fact that dosages of prescription opioids increased and doctors kept pain sufferers on prescription opioids for a longer period of time had little effect. Last, an analysis is conducted on medical interventions that reduce either the probability of becoming addicted or the odds of an addict dying from an overdose. While such interventions are valued by consumers, they increase the number of opioid users. Reducing the odds of addiction can result in even more deaths due to the rise in users.

2 Literature

There is now an extensive empirical literature on opioid epidemics. Following Case and Deaton (2017, 2020), some studies focus on demand factors, such as physical and mental pain, unemployment, and social isolation. The increase in pain has been documented by Blanchflower and Oswald (2020) and Nahin et al. (2019). In their recent review, Cutler and Glaeser (2021) suggest that the rise in pain can’t explain the increase in opioid deaths. The effects of other economic factors on opioid deaths, such as import competition, unemployment, and poverty, are also estimated to be small—see, for example, Pierce and Schott (2020) and Ruhm (2019). In contrast, Currie and Schwindt (2021), Cutler and Glaeser (2021), and Mulligan (2020) suggest that lower prices combined with easy access to opioids were the main drivers. Alpert et al. (2022) exploit cross-state variation in exposure to OxyContin to show that the introduction and marketing of OxyContin can explain a substantial share of overdose deaths over the last two decades.\(^6\)

Theoretical analyses of addiction started with Becker and Murphy (1988).\(^7\) They devel-

---


\(^7\)For empirical tests of rational addiction models, see, among others, Chaloupka (1991) and Becker,
oped a model of habit formation where past consumption of an addictive good increases the marginal utility from future consumption of it. Orphanides and Zervos (1995) extend the framework to a setting where individuals must learn over time, in Bayesian fashion, about how addictive a good will be for them. Strulik (2021) also extends the Becker and Murphy (1988) habit-formation framework by incorporating it into a model with health deficits. Specifically, the use of opioids to control pain creates health deficits as a person ages that increase the probability of death. He considers two settings: One where a person is completely rational and another where they do not understand how their addiction evolves by usage. For the two scenarios, he then compares numerically how addiction changes over the life cycle.

The current analysis replaces Becker and Murphy’s (1988) deterministic habit-formation model with a stochastic framework involving state-contingent preferences. In particular, individuals’ preferences evolve randomly through various addiction stages in a manner that is a function of their opioid usage. Individuals may have different predilections toward opioid misuse and leisure. This heterogeneity in preferences is necessary for matching facts in the US data. A person fully understands the state-contingent structure of tastes when making their consumption decisions, so as in Becker and Murphy (1988), they undertake all decisions rationally. As was mentioned, in the quantitative analysis, individuals’ objective and subjective beliefs are allowed to differ for the early part of the crisis. As will be seen, the state-contingent preference structure captures all of the key aspects (complementarity, withdrawal, and tolerance) of the Becker and Murphy (1988) model. It is much better suited for modeling risky behavior and matching the stages of substance abuse cataloged in the medical literature. On this, the framework is matched up with US data on addiction—namely, the population fractions of nonusers, misusers, addicts, and deaths, and the transition probabilities between these states. This is done for both college- and non-college-educated individuals. All of these features distinguish the current work from the above research.

The analysis abstracts from supply side considerations. Galenianos and Gavazza (2017) estimate a search model of crack cocaine consumption, where buyers search for sellers with high-quality drugs, but the quality is not observable. A search model for opioids is estimated by Schnell (2022). In her framework, patients search for physicians in a primary market but can also access opioids in an illegal secondary market. Patients can resell legal opioids in the primary market, which affects physicians’ prescription behaviors.

The paper also relates to a large literature on quantitative models of health and mortality. Borella, De Nardi, and Yang (2020), Hall and Jones (2007), Hosseini, Kopecky, and Zhao (2021), Margaris and Wallenius (2020), Nygaard (2021), Ozkan (2017), Scholz and Seshadri

(2013), and Suen (2006) are recent examples from this literature. It also connects with economic models of epidemics, such as Bairoliya and Imrohoroglu (2020), Brotherhood, Kircher, Santos, and Tertilt (2020), Eichenbaum, Rebelo, and Trabandt (2021), Greenwood, Kircher, Santos, and Tertilt (2019), and Kremer (1996).

3 The Setup

Individuals may consume three goods: namely, regular consumption goods, $c$, leisure, $l$, and opioids, $o$. The prescription price of opioids is $p$, while the black market price is $q$. There are potentially 5 stages of addiction, $s$, with $s = n, p, b, a, d$. A person moves from addiction stage $i$ to addiction stage $j$ with probability $\sigma_{ij}$. These transition probabilities depend both upon chance and opioid usage. A person starts out as a pain-free nonuser, $n$. With exogenous probability $\sigma_{np}$ the individual experiences pain next period, $p$, which requires opioids to medicate. At that time the person may abide by their prescription or misuse opioids. Abuse, $b$, occurs with endogenous probability $\sigma_{pb}$. An individual who follows their prescription for pain returns to normality with exogenous probability $\sigma_{pn}$. Even when a person starting off as nonuser who doesn’t experience pain, they may still decide to use opioids. A pain-free nonuser enters the abuse state with the endogenous probability $\sigma_{nb}$. An abuser, $b$, becomes an addict, $a$, with the endogenous odds, $\sigma_{ba}$. They return to pain-free normality with exogenous probability, $\sigma_{bn}$. An addict reverts through rehabilitation to a nonuser, $n$, with exogenous odds $\sigma_{an}$. An addict dies with endogenous probability $\sigma_{ad}$. Upon death addicts are replaced by their young doppelgangers. A schematic of the stages is shown in Figure 7.

An individual has one unit of time that they split between work and leisure. Hours worked, $h$, are indivisible so $h \in \{0, 1\}$, where $0 < h < 1$. Leisure, $l$, is just given by $l = 1 - h$. A person’s stage-$s$ productivity at work is denoted by $\pi_s$ for $s = n, p, b, a$. Labor productivity declines with the extent of a person’s opioid usage so that $\pi_a < \pi_b < \pi_p = \pi_n$. A worker earns the wage $\pi_s$, which is equal to their productivity. A nonworker receives a transfer in the amount, $t$. The employment decision is made after the opioid one. For convenience assume that a person in stages $n$ and $p$ always works. An individual discounts the future by the factor $\beta$. The budget constraint for an individual in the $s$-th stage (for
Figure 7: Stages. A person starts out as a pain-free nonuser, \(n\). From there they may move either to an opioid abuser, \(b\), or a prescription opioid user, \(p\). Prescription users may also become abusers. Abusers face the chance of addiction, \(a\). An addict can die, \(d\). Abusers and addicts may work or not. Last, it is possible for an addict, an abuser, and a prescription user to return to the pain-free nonuser state. The transition probabilities in bold are endogenous.

\(s \neq d\) reads

\[
c = \begin{cases} 
\pi_s h, & \text{works and doesn’t use in } s = n; \\
\pi_s h - p o - q(o - o), & \text{works and uses in } s = p; \\
\pi_s h - qo, & \text{works and uses in } s = n, b, a; \\
t - qo, & \text{doesn’t work and uses in } s = b, a.
\end{cases}
\]

A prescription user can always acquire \(o\) units of opioids at the per unit legal price \(p\). Any excess amount must be purchased on the black market at the per unit price \(q\). All other users must purchase opioids at the black market price \(q\).

The utility function for regular goods, \(c\), is

\[
U(c) = (1 - \mu_s)(1 - \eta)(c^{1-\rho} - 1)/(1 - \rho), \text{ with } \rho \geq 0.
\]

The leisure utility function is given by

\[
L(l) = \begin{cases} 
L_s(1 - b) = (1 - \mu_s)\eta \ln(1 - h), & \text{employed in } s = n, p, b, a; \\
L_s(1) + \lambda_s = \lambda_s, & \text{unemployed in } s = b, a.
\end{cases}
\]

Abusers and addicts draw a leisure shock \(\lambda_s\), which affects their desires to work or not. This shock is drawn after they make their opioid decision. Let \(\lambda_s\) come from a Gumbel
distribution so that

\[ \Pr[\lambda_s \leq \tilde{\lambda}_s] = \Lambda(\tilde{\lambda}_s) = \exp \left( - \exp \left[ -(\lambda_s - \iota_s)/\xi_s \right] \right) , \text{ for } s = b, a. \]

The conditional mean of the Gumbel distribution for those whose leisure shock exceeds a threshold level \( \lambda^*_s \), is given by

\[ \mathbf{E}[\lambda_s | \lambda_s \geq \lambda^*_s] = \lambda^*_s + \iota_s + \gamma \xi_s, \]

where \( \gamma \) is the Euler–Mascheroni constant.

The stage-\( s \) utility function for opioids, \( o \), is

\[ O(o - \tilde{o}) = \begin{cases} O_s(o - \tilde{o}) + \varepsilon_s = \mu_s[(o - \tilde{o})^{1-\psi} - 1]/(1 - \psi) + \varepsilon_s, & \text{user in } s = n, p; \\ O_s(o - \tilde{o}) = \mu_b[(o - \tilde{o})^{1-\psi} - 1]/(1 - \psi), & \text{user in } s = b; \\ O_s(o - \tilde{o}) = \mu_a[(o - \tilde{o})^{1-\psi} - 1]/(1 - \psi) - \omega_a, & \text{user in } s = a; \\ 0, & \text{nonabuser in } s = n, p. \end{cases} \]

(In the above \( \psi \geq 0 \).) The user only realizes utility when they consume opioids in excess of the regulated amount \( \tilde{o} \). Here \( \varepsilon_s \) is a random variable reflecting the euphoria that a user obtains in states \( n \) or \( p \). This variable triggers opioid usage. It is drawn from a Gumbel distribution so that

\[ \Pr[\varepsilon_s \leq \tilde{\varepsilon}_s] = \Gamma(\tilde{\varepsilon}_s) = \exp \left( - \exp \left[ -(\varepsilon_s - \nu_s)/\zeta_s \right] \right) , \text{ for } s = n, p. \]

The conditional mean of the euphoria from opioid usage for those whose shock exceeds a threshold level \( \varepsilon^*_s \) is

\[ \mathbf{E}[\varepsilon_s | \varepsilon_s \geq \varepsilon^*_s] = \varepsilon^*_s + \nu_s + \gamma \zeta_s. \]

This shock is realized before an individual decides to use opioids.

Some types of individuals desire opioids more than others. As can be seen, the weight, \( \mu_s \), on opioids depends on the stage of a person’s opioid usage, \( s \), i.e., a person’s craving for opioids depends on their stage of usage. The natural assumption is \( \mu_a \geq \mu_b \geq \mu_p \geq \mu_n \). The weights on the utility functions for consumption, leisure, and opioids sum to one; i.e., \((1 - \mu_s)(1 - \eta) + (1 - \mu_s)\eta + \mu_s = 1\). Thus, differences in \( \mu_s \) affect how individuals in different stages enjoy opioids relative to regular consumption and leisure, but do not influence how people fancy consumption versus leisure. Addicts also suffer a utility cost \( \omega_a \), which captures the negative impact of opioids on other facets of their lives.
The *objective* probability of transiting between stage $i$ and stage $j$, $\sigma_{ij}$, is given by

$$\sigma_{ij} = S_{ij}(o) = \sigma_j \sqrt{o}, \text{ for } (i \to j) = (b \to a), (a \to d).$$

(2)

The odds of each transition are increasing functions of opioid usage, $o$. The *subjective* probabilities, $\tilde{\sigma}_{ij}$, of transiting between stages may differ from the objective ones, $\sigma_{ij}$. In particular, in the calibration exercise it will be assumed that for the early period of the opioid crisis some individuals were misinformed about the odds of becoming addicted. Specifically,

$$\tilde{\sigma}_{ba} = S_{ba}(o) = \alpha \sigma_a \sqrt{o}, \text{ with } 0 \leq \alpha \leq 1.$$  

(3)

If $\alpha < 1$, then a person believes that their odds of addiction are $\tilde{\sigma}_{ba}$, which are less than the actual odds, $\sigma_{ba}$, determining the transition from abuse to addiction. This will increase recreational opioid usage.

The big picture is this. A nonuser or a person in pain may or may not use opioids at stages $n$ or $p$ depending on their draws for $\varepsilon_s$. If they do, they go from the abuse stage, $b$, to the addiction stage, $a$, with the probability $S_{ba}(o)$, which is increasing in their usage, $o$. The extent of usage depends on the stage of use. An addict craves more opioids relative to an abuser, all else equal. This implies that withdrawal for an addict will be costly because the marginal utility of opioid consumption is high. So, it mimics the withdrawal property of the Becker and Murphy (1988) model.

The framework also duplicates the key complementarity (or reinforcement) feature of the Becker and Murphy (1988) model in that an increase in an abuser’s current opioid consumption is likely to spur increased future consumption with a move to the addiction stage. Also, an opioid user’s productivity at work declines in the later stages $b$ and $a$; given property this they may choose not to work. Ultimately, an addict may even die. The speed of the downward spiral depends both upon an individual’s luck and opioid usage. The presence of $\omega_a$ in an addict’s utility function implies that addiction is costly. Furthermore, and importantly, the fact that an addict is just a stage away from death operates to lower their expected lifetime utility, as will be seen. Therefore, the framework captures the Becker and Murphy feature that utility declines with opioid usage, which is called tolerance (or negativity) in the literature. Last, one might think that opioid abusers and addicts have lower discount factors than nonusers and prescription users. This could be true. The state-contingent preference structure adopted here is able to match the US data on opioid usage without differences in discount factors. Similarly, heterogeneity in risk aversion across individuals is unnecessary, although perhaps abusers and addicts are indeed less risk averse in nature. Differences in tastes concerning the enjoyment from opioids are sufficient and serve as a more direct route.
The empirical analysis is done for both the non-college and college educated populations. These two populations may differ by their underlying attributes, such as their labor productivities, the likelihood of experiencing pain, etc. To save on notation, the decision problems in Section 4 below are presented for a generic person.

4 Decision Problems by Stage

Turn now to a presentation of the decision problems at each stage $s$ for $s = n, p, b, a$. Let $N$ represent the expected lifetime utility for a nonuser without pain who has not yet drawn the opioid euphoria shock; $P$ the expected lifetime utility for a person with pain who still has to draw the opioid euphoria shock; $B$ the expected lifetime utility for an abuser before the leisure shock; and $A$ the expected lifetime utility for an addict who is waiting for the leisure shock. The decision problems for an individual in each of these states are formulated now. In the nonuser and prescription-user stages, a person always works.

4.1 Nonuser

Start with a nonuser who isn’t experiencing pain. Assume they will use opioids when $\varepsilon_n$ exceeds some threshold value, $\varepsilon^*_n$, and won’t otherwise. Their opioid-use decision is then

$$o = \begin{cases} o = 0, & \text{don’t use, if } \varepsilon_n < \varepsilon^*_n; \\ o > o, & \text{use, if } \varepsilon_n > \varepsilon^*_n. \end{cases}$$

The Bellman equation for a pain-free nonuser who has not yet drawn the opioid euphoria shock is

$$N = \Gamma(\varepsilon^*_n)\{U(\pi_n h) + L_n(1 - h) + \beta[(1 - \sigma_{np})N + \sigma_{np}P]\}$$

$$+ \{1 - \Gamma(\varepsilon^*_n)\}\{\max_{o > \varrho} U(\pi_n h - qo) + O_n(o - \varrho) + E[\varepsilon_n|\varepsilon_n \geq \varepsilon^*_n] + L_n(1 - h)$$

$$+ \beta[(1 - \sigma_{bn})B + \sigma_{bn}N]\}. \quad (4)$$

The first line on the righthand side gives the expected utility for a nonuser, which occurs with probability $\Gamma(\varepsilon^*_n)$. This person experiences pain next period with chance $\sigma_{np}$, in which case their discounted expected lifetime utility is $\beta P$, or remains pain free with probability $1 - \sigma_{np}$, and then realizes a discounted expected utility level of $\beta N$. The second and third lines give the expected utility when the person decides to use opioids in the current period, which occurs with the odds $1 - \Gamma(\varepsilon^*_n)$. A nonuser purchases opioids at the black market price.
Next period the individual will either reenter the nonuser state with probability $\sigma_{bn}$, which returns a discounted expected utility of $\beta N$, or enter the abuser state with complementary probability $1 - \sigma_{bn}$, in which case their discounted expected utility is $\beta B$. A user gets euphoria from opioid usage, which delivers $E]\varepsilon_n|\varepsilon_n \geq \varepsilon_n^*\]$. At this stage a person always works.

The euphoria threshold, $\varepsilon_n^*$, must equate the utility from nonusing and using so that

$$
\varepsilon_n^* = U(\pi_n h) + L_n(1 - h) - \max_{o \geq o} \left\{ U(\pi_n h - qo) + L_n(1 - h) + O_n(o - \tilde{o}) + \beta[(1 - \sigma_{bn})B + \sigma_{bn}N] \right\}.
$$

As can be seen, the threshold value of the shock is simply the difference in the expected utility values from not using and using. By eyeballing the threshold equation, it appears that if $q$ falls, then $\varepsilon_n^*$ drops, implying that there will be more users. In terms of the model's stages in Figure 7, it is clear that $1 - \Gamma(\varepsilon_n^*)$ will determine the endogenous transition $\sigma_{nb}$. The opioid euphoria shock can be thought of as a short cut device for factors outside the model, such as genetic susceptibility, or environmental factors, such as network effects.

### 4.2 Prescription User

Likewise, a person experiencing pain abuses opioids in the current period when $\varepsilon_p$ exceeds some threshold value, $\varepsilon_p^*$, and doesn’t otherwise. The recursion for a person experiencing pain who has a prescription and who has not yet drawn the opioid euphoria shock is

$$
P = \Gamma(\varepsilon_p^*) \left\{ U(\pi_p h - p\tilde{o}) + L_p(1 - h) + \beta[(1 - \sigma_{pn})P + \sigma_{pn}N] \right\}
+ [1 - \Gamma(\varepsilon_p^*)] \left\{ \max_{o \geq o} U(\pi_p h - po - q(o - \tilde{o})) + O_p(o - \tilde{o}) + E]\varepsilon_p|\varepsilon_p \geq \varepsilon_p^*\] + L_p(1 - h)
+ \beta[(1 - \sigma_{bn})B + \sigma_{bn}N] \right\}.
$$

Here $\tilde{o}$ denotes the level of opioids obtained from the prescription. Consuming anything above this level is improper usage. Opioids below the prescription level $\tilde{o}$ are purchased at the legal price $p$, while any overage is bought at the black market price $q$. This recursion is analogous to (4), but note that a prescription-follower experiencing pain may revert to normality with probability $\sigma_{pn}$ or continue with pain with the odds $1 - \sigma_{pn}$, as shown on the
first line. The threshold $\varepsilon^*_p$ is given by the equation

$$\varepsilon^*_p = U(\pi_p h - p \bar{q}) + L_p(1 - h) + \beta[(1 - \sigma_{pm})P + \sigma_{pm}N]$$

$$- \max_{o \geq 2} \{U(\pi_p h - p \bar{q} - q(o - \bar{q})) + L_p(1 - h) + O_p(o - \bar{q}) + \beta[(1 - \sigma_{bn})B + \sigma_{bn}N]\}. \quad (7)$$

With respect to Figure 7, $1 - \Gamma(\varepsilon^*_p)$ determines the endogenous transition $\sigma_{pb}$.

In the nonuser and prescription-user stage, the generic decision to misuse opioids is regulated by the first-order condition

$$O'_s(o - \bar{q}) = U'(\pi_s h - qo + I_s(q - p)\bar{q}) q, \text{ for } s = n, p, \quad (8)$$

with $I_n \equiv 0$ and $I_p \equiv 1$. The lefthand side is the marginal benefit from using opioids, while the righthand side is the marginal cost. The black market price for a unit of opioids is $q$, which reduces the marginal utility of consumption by $U'(\pi_s h - qo + I_s(q - p)\bar{q})$.

### 4.3 Abuser

Attention is now directed to the abuse and addiction stages. In these stages a person may or may not work. Start with the abuser. An abuser will not work when the leisure shock $\lambda_b$ exceeds some threshold value, $\lambda^*_b$, and will work otherwise. Hours worked, $h$, is then given by

$$h = \begin{cases} h, & \text{work, if } \lambda_b < \lambda^*_b; \rule{0pt}{2.5ex} \\ 0, & \text{don’t work, if } \lambda_b > \lambda^*_b. \end{cases}$$

The Bellman equation for an abuser who has not yet drawn the leisure shock reads

$$B = \max_{o \geq 2} \{\Lambda(\lambda^*_b)\{U(\pi_b h - qo) + O_b(o - \bar{q}) + L_b(1 - h)$$

$$+ [1 - S_{ba}(o)]\beta[(1 - \sigma_{bn})B + \sigma_{bn}N] + S_{ba}(o)\beta A\}$$

$$+ [1 - \Lambda(\lambda^*_b)]\{U(t - qo) + O_b(o - \bar{q}) + L_b(1) + E[\lambda_b|\lambda_b \geq \lambda^*_b]$$

$$+ [1 - S_{ba}(o)]\beta[(1 - \sigma_{bn})B + \sigma_{bn}N] + S_{ba}(o)\beta A\}\}. \quad (9)$$

The first and second lines pertain to an abuser who works, which happens by the chance $\Lambda(\lambda^*_b)$. As the second line shows, a working abuser may become addicted next period with probability $S_{ba}(o)$, and the discounted expected utility associated with this state is $\beta A$. The odds of addiction are increasing in current opioid usage, $o$. If they do not become addicted, which happens with probability $1 - S_{ba}(o)$, then they may either return to normality with
probability $\sigma_{bn}$ or remain in the abuse state with the odds $1 - \sigma_{bn}$. The third and fourth lines are for an unemployed abuser. An unemployed abuser enjoys the leisure shock, which has the expected value $E[\lambda_b|\lambda_b \geq \lambda^*_b]$. Last, recall that the opioid decision is made before the one to work, which explains the outer position of the single max operator in equation (9).

The leisure threshold $\lambda^*_b$ equates the utility from working and not working so that

$$
\lambda^*_b = U(\pi_b h - qo) + L_b(1 - h) - U(t - qo) - L_b(1).
$$

(10)

Notice the threshold level of the leisure shock is just the difference in utility between working or not working. This decision is static, given a value for opioid usage, $o$. The leisure shock inserts a form of complementarity for abusers and addicts between opioid usage and leisure. That is, the use of opioids increases the value of leisure. In a more a general setting, people could randomly move into unemployment with this transition increasing the value of opioids. This would capture Case and Deaton’s (2020) “deaths of despair” hypothesis. Analogously, the provision of unemployment insurance and disability benefits could encourage unemployment and drug use in line with Mulligan (2022).

The first-order condition for an abuser’s opioid usage, $o$, connected with (9) is

$$
O'_b(o - o) = \Lambda(\lambda^*_b)U'(\pi_b h - qo)q + [1 - \Lambda(\lambda^*_b)]U'(t - qo)q
$$

$$
+ S'_{ba}(o)\beta[(1 - \sigma_{bn})B + \sigma_{bn}N - A].
$$

(11)

The lefthand side is the current marginal benefit from using opioids, $O'_b(o - o)$. The righthand side is the expected marginal cost, which is made up of two components: First, the person must pay $q$ for each unit of black-market opioids, which results in an expected stage-$b$ momentary utility loss of $\Lambda(\lambda^*_b)U'(\pi_b h - qo)q + [1 - \Lambda(\lambda^*_b)]U'(t - qo)q$. Second, using opioids in the current period affects the probability of becoming an addict next period through the term $S'_{ba}(o)$. This will result in a loss of discounted expected lifetime utility in the amount $\beta[(1 - \sigma_{bn})B + \sigma_{bn}N - A]$. Presumably, this term is positive (reflecting a cost), unless opioid usage can create such euphoria that an addict is happier than an abuser.
4.4 Addict

Finally, by analogy, the Bellman equation for an addict is

\[
A = \max_{o>0} \{ \Lambda(\lambda_a^*) \{ U(\pi_a h - qo) + O_a(o - q) + L_a(1 - h) \\ + \ [1 - S_{ad}(o)] \beta [(1 - \sigma_{an}) A + \sigma_{an} N] + S_{ad}(o) \beta \delta \} \\
+ [1 - \Lambda(\lambda_a^*)] \{ U(t - qo) + O_a(o - q) + L_a(1) + E[\lambda_a | \lambda_a \geq \lambda_a^*] \\
+ [1 - S_{ad}(o)] \beta [(1 - \sigma_{an}) A + \sigma_{an} N] + S_{ad}(o) \beta \delta \} \},
\]

(12)

where \( \delta \) is the utility associated with death. The likelihood of an addict dying next period, \( S_{ad}(o) \), is an increasing function of their current opioid usage, \( o \). An addict rehabilitates with probability \( \sigma_{an} \), in which case they return to the pain-free nonuser state. The leisure threshold, \( \lambda_a^* \), is given by

\[
\lambda_a^* = U(\pi_a h - qo) + L_a(1 - h) - U(t - qo) - L_a(1).
\]

(13)

Last, an addict’s opioid consumption decision is governed by

\[
O'_a(o - q) = \Lambda(\lambda_a^*) U'(\pi_a h - qo) q + [1 - \Lambda(\lambda_a^*)] U'(t - qo) q \\
+ S_{ad}(o) \beta [(1 - \sigma_{an}) A + \sigma_{an} N - \delta].
\]

(14)

opiod usage by abusers and addicts determines the endogenous transitions \( \sigma_{ba} \) and \( \sigma_{ad} \) in Figure 7 via the \( S_{ba}(o) \) and \( S_{ad}(o) \) functions. Also note that when a person transits from being an abuser of opioids to an addict, their hunger for opioids increases as reflected by a shift in their opioid utility function from \( O_b(o - q) \) to \( O_a(o - q) \)—recall equation (1). This can be interpreted as increased dependence on the drug and is similar to the tolerance property in the Becker and Murphy (1988) model.

5 Fitting a Markov Chain to the US Data

Markov chain representations of the schematic in Figure 7 are now fit to the US data. This is done for both the college- and non-college-educated populations. At any point in time, an individual in the model is in one of five categories: a nonuser, \( n \); a prescription opioid user for pain, \( p \); an abuser of opioids, \( b \); an addict, \( a \); or dead, \( d \). Denote the long-run fractions of the model’s population in each of these categories by \( e_n, e_p, e_b, e_a, \) and \( e_d \). These fractions represent the ergodic distribution for the model. (In the model when an addict dies they are
replaced by young nonuser.) The addiction categories in the US data are defined slightly differently; represent these data categories by $n, p, m, a, d$, where $m$ refers to misusers. In the data a nonuser is defined as someone who does not use opioids, while in the model, this category includes first-time pain-free misusers. Likewise, prescription users in the data are defined as individuals who abide strictly by their prescription, while in the model, this category includes first-time prescription misusers. The misuse category in the data comprises both repeat and first-time misusers, while the abuse category in the model excludes first-time misusers. The mapping between data and model categories is presented in Appendix B.

5.1 Estimation, Preliminaries

Let $T_{ij}$ be the fraction of individuals, as estimated from the US data, who move from state $i$ to state $j$, and let $t_n, t_p, t_m, t_a, t_d$ represent the fractions of the US population for $i, j = n, p, m, a, d$. Assume that these fractions are invariant over time so that they represent the long-run distribution of the estimated Markov chain. That is, $t = tT$, where $T$ is the $5 \times 5$ transition matrix associated with the $T_{ij}$’s. While the Markov chain will be estimated for both the non-college- and college-educated segments of the population, the representation of the Markov chain will be cast generically to save on notation. A period corresponds to one year. Some of the cells in the transition matrix $T$ can be filled in directly from the data. Others are estimated by requiring that the long-run distribution $t$ is consistent with the empirical estimates of the fractions of the US population in each of the five addiction states.

US Population by Addiction State

Take the population between ages 18 and 64, about 200 million individuals in 2017. Start with those who are either misusing opioids or are addicted to them. The most comprehensive data on illicit drugs (including the non-medical use of prescription drugs) is provided by the National Survey of Drug Use and Health (NSDUH). The NSDUH interviews about 70,000 individuals, ages 12 and older, and provides information on their use of alcohol, tobacco, and a wide range of illicit drugs. The survey also contains information on employment, health, and income. The NSDUH classifies individuals as misusers if they use any opioids without a prescription, use them for reasons other than directed by a physician, or use them in greater amounts or more often than prescribed during the past 12 months. Heroin users are classified as misusers by default. Misusers are then asked follow-up questions to determine whether
they have an opioid disorder (referred to as addicts here). To be labeled as an addict, opioids must interfere with a person’s daily life. Hence, in the NSDUH, the addicts are a subset of misusers. Given the model’s structure, for the analysis below, someone who is misusing but is not an addict is labeled as a misuser. Details on all data definitions and sources are provided in Data Appendix A.

The 2015-2018 surveys are used for the analysis, where 33.25 percent of respondents are college graduates or about 66.5 million individuals when extrapolated to the entire population, and the rest, about 133.5 million, do not have a college degree. Among non-college individuals between the ages 18 and 64, 4.48 percent, about 5.9 million people, are classified as misusers, and an additional 1.33 percent, roughly 1.8 million people, are labeled addicts. Shares of misusers and addicts are lower for college graduates; 3.04 percent (2.0 million misusers) and 0.43 percent (0.29 million addicts).

To determine the number of individuals who use prescription opioids for pain, the Medical Expenditure Panel Survey (MEPS) is used. MEPS surveys individuals and families, their medical providers, and employers in the United States. The household component, which is used here, provides information on demographic characteristics, health conditions, health status, and the use of medical services. Between 2015 and 2018, about 13.5 percent of the US non-college-educated population between the ages 18 and 64 used prescription opioids for pain. The number for college graduates was 9.2 percent. Finally, according to the CDC’s Vital Statistics, there were on average 40,641 annual opioid-overdose-related deaths during the 2015-2018 period among those ages 18 to 64. Of these deaths, about 92.5 percent (37,596 individuals) were people without college degrees. All these pieces are put together in Table 2, which shows the fractions of the population in each of the five data categories for both education groups; viz, $t_n$, $t_p$, $t_m$, $t_a$, and $t_d$. Nonusers, $n$, are the residual group. The table can be thought of as giving the long-run probabilities of being in particular states. The odds ratios for college and non-college graduates in the nonuser, misuser, and addict categories are reported in Table 3. As can be seen, non-college graduates have higher proclivities to become misusers or addicts than college graduates; i.e., the fractions of non-college graduates in the misuser and addict categories are higher than college graduates’ shares in the population at large.

<table>
<thead>
<tr>
<th>Non-College</th>
<th>College</th>
<th>Nonuser</th>
<th>Prescription</th>
<th>Misuser</th>
<th>Addict</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_n$</td>
<td>0.80688</td>
<td>0.87342</td>
<td>$t_p$</td>
<td>0.13477</td>
<td>0.09182</td>
<td>$t_m$</td>
</tr>
</tbody>
</table>
### Table 3: Opioid Users by Education, Odds Ratios

<table>
<thead>
<tr>
<th></th>
<th>Nonuser</th>
<th>Misuser</th>
<th>Addict</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-College</td>
<td>1.0259</td>
<td>1.1197</td>
<td>1.2890</td>
</tr>
<tr>
<td>College</td>
<td>0.9480</td>
<td>0.7597</td>
<td>0.4198</td>
</tr>
</tbody>
</table>

**Filling in the Transition Probabilities**

The elements of the estimated transition matrix, $T$, are now filled in starting with the directly assigned ones.

*Transition Probabilities Directly Assigned.* According to the NSDUH, about 15.8 percent of non-college and 18.9 percent of college misusers started misusing opioids during the last year. The data does not speak on how they arrive in the misuse state, $m$. They can arrive from either the nonuser, $n$, or prescription user, $p$, states. In the NSDUH, 64.7 percent of non-college misusers and 46.0 percent of non-college addicts report pain as their primary motivation for opioid usage. The fractions for college graduates are 68.5 and 48.1 percent.

In a qualitative study on a small sample of patients with an opioid disorder, Stumbo et al. (2017) report that 41 percent of patients develop a disorder from taking prescription opioids. Taking 50 percent as the fraction of misusers that come from each state for both education groups yields (numbers in italics in the brackets refer to college graduates)

$$T_{nn} = 0.5 \times 0.1581[0.1889] \times t_n \quad \text{and} \quad T_{pm} = 0.5 \times 0.1581[0.1889] \times t_m,$$

delivering $T_{nn}$ and $T_{pm}$; given the observed values for $t_n$, $t_p$, and $t_m$ in Table 2.\(^8\)

Dividing the number of deaths by the number of addicts yields a value for $T_{ad}$. To determine $T_{an}$, two pieces of information are used. First, Weiss and Rao (2017) report a recovery rate of about 15 percent for addicts who are treated. But, the fraction of addicts who seek treatment is not large. In the NSDUH, only 29.6 percent of non-college addicts and 19.1 percent of college addicts do so. Set $T_{an}$ to be the product of the recovery and treatment rates. The transitions for each education class based on available information are reported in Table 4.

---

\(^8\)Summing the above two conditions gives $T_{nn}t_n + T_{pm}t_p = 0.1581[0.1889] \times t_n$; i.e., 15.81 percent of misusers without a college degree and 18.89 of those with one are new arrivals from the nonuser and prescription-user states.
Estimated Transition Probabilities. There are four transition probabilities left to be determined: namely, $T_{np}$, $T_{pn}$, $T_{mn}$ and $T_{ma}$. These are treated as free parameters and are chosen to minimize the distance between the fractions of the US population in each state and their analogues implied by the Markov chain. The minimization procedure delivers $T_{np} = 0.0337$, $T_{pn} = 0.1752$, $T_{mn} = 0.1386$ and $T_{ma} = 0.0195$ for the non-college population and $T_{np} = 0.0427$, $T_{pn} = 0.3699$, $T_{mn} = 0.1842$ and $T_{ma} = 0.0056$ for the college population.\footnote{It is possible to compute the transitions $T_{np}$ and $T_{pn}$ directly using data from MEPS. The results of an alternative estimation strategy, where only $T_{mn}$ and $T_{ma}$ are estimated, are presented in Appendix C. The fit is worse than the one obtained in Table 5.}

5.2 Estimation, Results

The upshot of the above discussion is the following estimates of the Markov transition matrices for the non-college and college (in italics) populations:

$$
\begin{bmatrix}
0.9620, & 0.9541 & 0.0337, & 0.0427 & 0.0044, & 0.0033 & 0 & 0 \\
0.1752, & 0.3699 & 0.7985, & 0.5989 & 0.0263, & 0.0313 & 0 & 0 \\
0.1386, & 0.1842 & 0 & 0.8419 & 0.8102 & 0.0195, & 0.0056 & 0 \\
0.0444, & 0.0287 & 0 & 0.0002 & 0.0000 & 0.9342, & 0.9607 & 0.0212, & 0.0106 \\
0.9966, & 0.9989 & 0 & 0.0034, & 0.0011 & 0 & 0 \\
\end{bmatrix}.
$$

The long-run transition probabilities, $t$, connected with these Markov chains are reported in Table 5.
Table 5: Opioid Usage, Fractions–Data and Markov Chain

<table>
<thead>
<tr>
<th>Nonuser</th>
<th>Prescription</th>
<th>Misuser</th>
<th>Addict</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-College</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.8069</td>
<td>0.1348</td>
<td>0.0448</td>
<td>0.0133</td>
</tr>
<tr>
<td>Markov Chain</td>
<td>0.8069</td>
<td>0.1348</td>
<td>0.0448</td>
<td>0.0133</td>
</tr>
<tr>
<td>College</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0.8734</td>
<td>0.0918</td>
<td>0.0304</td>
<td>0.0043</td>
</tr>
<tr>
<td>Markov Chain</td>
<td>0.8725</td>
<td>0.0928</td>
<td>0.0304</td>
<td>0.0043</td>
</tr>
</tbody>
</table>

The fit is very good. The model’s probabilities can now be recovered from the estimated transition matrix $T$. The transition probabilities $\sigma_{np}$, $\sigma_{pn}$, $\sigma_{bn}$, and $\sigma_{an}$ are exogenous in the model and can be recovered directly from the estimated transitions probabilities between the corresponding data categories, $T_{np}$, $T_{pd}$, $T_{bn}$, and $T_{an}$. Appendix B details the mapping between objects in the data and their counterparts in the model. For example, $T_{np}$ is 0.0337 for non-college and 0.0427 for college individuals. These values imply that in the model $\sigma_{np}$ is 0.0347 for non-college and 0.0449 for college, where the slight mismatch is due to differences between model and data categories. The entries in the matrix $T$ also determine observed values for $\Gamma(\varepsilon^*_n)$ and $\Gamma(\varepsilon^*_p)$, the fractions of nonusers and prescription users who do not experiment with opioids. Since $\varepsilon^*_n$ and $\varepsilon^*_p$ are endogenous, the model has to calibrated to hit these datums, as discussed in Section 6. Finally, in the data $T_{na} = 0.0195$ of non-college misusers become addicts while $T_{ad} = 0.0212$ of them die each period. The numbers for college individuals are 0.0056 and 0.0106. For the model, these entries give observations for the endogenous transition probabilities $S_{ba}(o)$ and $S_{ad}(o)$. Again, since $o$ is an endogenous variable, the model is calibrated in Section 6 to match these statistics. Table 6 summarizes the model parameters obtained from the Markov chain $T$.

Table 6: Parameters for the Model’s Markov Chain Representations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Non-College</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma_{np}$</td>
<td>Prob[$n \rightarrow p$]</td>
<td>0.0347</td>
<td>0.0449</td>
</tr>
<tr>
<td>$\sigma_{pn}$</td>
<td>Prob[$p \rightarrow n$]</td>
<td>0.1759</td>
<td>0.3703</td>
</tr>
<tr>
<td>$\sigma_{bn}$</td>
<td>Prob[$b \rightarrow n$]</td>
<td>0.1419</td>
<td>0.1854</td>
</tr>
<tr>
<td>$\sigma_{an}$</td>
<td>Prob[$a \rightarrow n$]</td>
<td>0.0455</td>
<td>0.0290</td>
</tr>
<tr>
<td>$\Gamma(\varepsilon^*_n)$</td>
<td>Non-misusers $\div$ Nonusers</td>
<td>0.9966</td>
<td>0.9989</td>
</tr>
<tr>
<td>$\Gamma(\varepsilon^*_p)$</td>
<td>Non-misusers $\div$ Prescription users</td>
<td>0.9689</td>
<td>0.9510</td>
</tr>
<tr>
<td>$S_{ba}(o)$</td>
<td>Prob[$b \rightarrow a$]</td>
<td>0.0232</td>
<td>0.0069</td>
</tr>
<tr>
<td>$S_{ad}(o)$</td>
<td>Prob[$a \rightarrow d$]</td>
<td>0.0212</td>
<td>0.0106</td>
</tr>
</tbody>
</table>
6 Calibration

To simulate the model, values must be assigned to the model’s various parameters. A few parameters are standard in the literature. All but one of the remaining parameters are based on 2015-2018 cross-sectional data. Some parameter values can be selected directly from these data. These parameters govern the incomes of individuals, prescription and street prices of opioids, the prescription consumption of opioids, and the exogenous transition probabilities. Other parameters are chosen by maximizing the model’s fit with respect to data targets. This is done by assuming that the objective and subjective probabilities about addiction risk are the same in 2015-2018. Examples of such parameters are the utility weights that individuals attach to opioid consumption, the location and scale parameters for the Gumbel distributions governing the euphoria and leisure shocks, the parameters controlling the endogenous transitions from misuse to addiction and addiction to death, and the utility associated with death. Again, the model period is one year. The sole remaining parameter governs people’s subjective probabilities about addiction risk for the 2000 to 2010 period. This parameter is determined using data on the change in deaths between 2010 and 2018, given the observed changes in prices, Rx dosages, and the risk of death. The selection of this last parameter does not influence the choice of the others.

6.1 Parameter Values Chosen from the Literature

Three parameters are set to standard values in the literature. The coefficient of relative risk aversion, $\rho$, is assumed to be 2. Following Cooley and Prescott (1995), the share of leisure in the utility function, $\eta$, takes a value of 0.64, and the annual discount factor, $\beta$, is 0.96.

6.2 Parameter Values Chosen Directly from 2015-2018 Cross-Sectional Data

Several parameters are set directly to their data counterparts. These parameters are now discussed.

Exogenous Transition Probabilities

The exogenous transition probabilities between different stages, $\sigma_{np}$, $\sigma_{pn}$, $\sigma_{bn}$, and $\sigma_{an}$ are read from Table 6.
Nonusers’ Incomes

In the 2016 Current Population Survey (CPS), the annual hours worked by non-college and college graduates are 1,893 and 2,061, respectively. These represent 38 and 41 percent of the 5,000 available hours in a year; these fractions pin down the values for $h$. Next, normalize, the productivity of a nonuser, $\pi_n$, without a college degree to 1. The annual income of an employed nonuser without a college degree, $\pi_n h$, was about $41,920 in the NSDUH for the 2015-2018 period. Hence, $\pi_n$ corresponds to $41,920/0.38 = 110,725. For an employed college nonuser, $\pi_n h$ was about $68,108, so $\pi_n$ is roughly $68,108/0.41 = 165,231, or with the productivity for the non-college educated normalized to one, 1.49. For those who are not employed, their total non-labor income in the CPS is used for $t$. The non-labor incomes for non-college and college graduates are $8,697 and $14,333, respectively, which implies $t = 0.079 = \$8,697/\$110,725 (0.129 = \$14,333/\$110,725) relative to a non-college, nonuser’s average productivity.

Prescription Prices, Street Prices, and Prescription Consumption of Opioids

Next turn to the cost of opioids. Start with prescription prices. Based on MEPS, the average out-of-pocket expenses per person for all outpatient opioid prescriptions among adults with one or more prescription opioid purchases was about $48.38 for those without a college degree and $37.10 for college graduates over the 2015-2018 period. MEPS can also be used to calculate how much prescription opioids patients take. During 2015-2018, the average yearly opioid usage for non-college prescription patients was about 3,543.75 MME (about 9.84 MME per day) and the average usage for college ones was about 1,785.00 MME (about 4.96 MME per day).\(^\text{10}\) Hence, set $\sigma$ to 3,543.75 and $p$ to $0.0137 per MME (=$48.38/3,543.75 MME) for those without a college degree. For college graduates, $\sigma$ is 1,785.00 and $p$ is $0.0208 per MME ($37.10/1,785.00 MME). The cost of opioids on the street is much higher. Table 7 shows the street prices per milligram (mg) of different opioids obtained from different sources—Dasgupta et al. (2013).\(^\text{11}\) While individuals use different types of opioids, each type has a certain morphine milligram

---

\(^{10}\)To put this in context, 9.84 MME per day would be equal to 6.6 (= 9.84/1.5) OxyContin 10 mg pills per day (the lowest dosage), while 4.96 MME per day corresponds to 3.3 pills.

\(^{11}\)StreetRx is a website that gathers, organizes, and displays street price data on diverted pharmaceutical controlled substances. The site allows for the anonymous submission of street prices that are paid for specific prescription and illicit drugs. The Researched Abuse, Diversion and Addiction-Related Surveillance (RADARS\textsuperscript{®}) System collects product- and geographically-specific data on abuse, misuse, and the diversion of prescription drugs. The Drug Diversion Program of RADARS is composed of approximately 250 prescription drug diversion investigators and regulatory agencies across the United States who are surveyed quarterly and asked to report the number of new instances of pharmaceutical diversion investigated. Silk Road is an anonymous online marketplace.
equivalence (MME), which can be used to calculate a price per MME.\textsuperscript{12} As a rough measure of \( q \), the street price of Oxycodone, a popular opioid sold under the brand name OxyContin, was $1 per mg or about $0.67 per MME.\textsuperscript{13}

<table>
<thead>
<tr>
<th>Opioid</th>
<th>Street Rx</th>
<th>Drug Diversion Survey</th>
<th>Silk Road</th>
<th>MME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydromorphone</td>
<td>3.29</td>
<td>4.47</td>
<td>3.55</td>
<td>4</td>
</tr>
<tr>
<td>Oxymorphone</td>
<td>1.57</td>
<td>1.65</td>
<td>1.58</td>
<td>3</td>
</tr>
<tr>
<td>Methadone</td>
<td>0.96</td>
<td>1.16</td>
<td>0.93</td>
<td>3</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>0.97</td>
<td>0.86</td>
<td>0.99</td>
<td>1.5</td>
</tr>
<tr>
<td>Hydrocodone</td>
<td>0.81</td>
<td>0.9</td>
<td>0.97</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7: Street Price in Dollars per mg of Different Opioids by Source

Given the large gap between prescription and street prices along with the other costs associated with obtaining opioids through non-medical channels, it is not surprising that misusers and addicts try to obtain opioids through doctors, friends, and relatives. In the NSDUH, close to 80 percent of misusers and addicts obtain opioids either from prescriptions or as gifts from friends and family. The share is about 73 percent for those without a college degree and 86 percent for those who are college graduates (Table 8). This suggests that the effective cost of opioids for misusers and addicts is lower than the street price. Focus on non-prescription sources. For misusers and addicts as a whole, 64.9 percent of the non-college educated and 81.4 percent of college graduates obtain opioids from friends or steal them at an assumed cost of zero. The remaining 35.1 percent of those without a college degree and 18.6 percent of college graduates obtain opioids from the street, at a cost of $0.67/MME.\textsuperscript{14} Then, the effective price for misusers and addicts is \( q = 0.3512 \times 0.67/\text{MME} = 0.235/\text{MME} \) for the non-college population, and \( q = 0.1862 \times 0.67/\text{MME} = 0.125/\text{MME} \) for the college one. As a fraction of a non-college, nonuser’s average productivity, \( p \) and \( q \) are then obtained by dividing them by $110,725.

Table 9 lists the parameters chosen based on outside information from either the literature or the US data.

\textsuperscript{12}The MME for an opioid drug indicates how many milligrams of morphine produces the same effect as one milligram of the drug.

\textsuperscript{13}See also Surrat et al. (2013) and Lebin et al. (2017).

\textsuperscript{14}To obtain 64.9\% [81.4\%], sum 40.43\% [41.75\%] and 3.43\% [3.33\%] (friends/relative and stolen) and divide by 67.6\% [55.4\%] (the sum of all non-prescription sources).
Table 8: Source of Opioids for Misusers and Addicts, %

<table>
<thead>
<tr>
<th>Source</th>
<th>Misusers</th>
<th>Addicts</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Non-College</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prescribed by one or more doctor</td>
<td>31.92</td>
<td>34.42</td>
<td>32.40</td>
</tr>
<tr>
<td>Given from friends/relatives</td>
<td>44.49</td>
<td>23.31</td>
<td>40.43</td>
</tr>
<tr>
<td>Bought from friends/relatives</td>
<td>10.06</td>
<td>17.43</td>
<td>11.47</td>
</tr>
<tr>
<td>Stolen (hospitals, friends/relatives)</td>
<td>3.57</td>
<td>2.82</td>
<td>3.43</td>
</tr>
<tr>
<td>Bought from dealer</td>
<td>5.29</td>
<td>18.47</td>
<td>7.82</td>
</tr>
<tr>
<td>Other</td>
<td>4.67</td>
<td>3.54</td>
<td>4.45</td>
</tr>
<tr>
<td><strong>College</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prescribed by one or more doctor</td>
<td>43.09</td>
<td>57.24</td>
<td>44.60</td>
</tr>
<tr>
<td>Given from friends/relatives</td>
<td>44.89</td>
<td>15.55</td>
<td>41.75</td>
</tr>
<tr>
<td>Bought from friends/relatives</td>
<td>4.56</td>
<td>17.79</td>
<td>5.97</td>
</tr>
<tr>
<td>Stolen (hospitals, friends/relatives)</td>
<td>3.50</td>
<td>1.93</td>
<td>3.33</td>
</tr>
<tr>
<td>Bought from dealer</td>
<td>0.88</td>
<td>6.04</td>
<td>1.43</td>
</tr>
<tr>
<td>Other</td>
<td>3.09</td>
<td>1.46</td>
<td>2.91</td>
</tr>
</tbody>
</table>

Table 9: Parameters, Chosen Directly from Outside Information

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Non-College</th>
<th>College</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \rho )</td>
<td>Relative risk aversion</td>
<td>2</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>( \eta )</td>
<td>Weight on leisure</td>
<td>0.64</td>
<td>C.&amp;P. (1995)</td>
<td></td>
</tr>
<tr>
<td>( \beta )</td>
<td>Discount factor</td>
<td>0.96</td>
<td>Standard</td>
<td></td>
</tr>
</tbody>
</table>

From the Literature

<table>
<thead>
<tr>
<th>Transitions</th>
<th>( \sigma_{np} )</th>
<th>( \sigma_{pn} )</th>
<th>( \sigma_{bn} )</th>
<th>( \sigma_{an} )</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( \text{Prob}[n \rightarrow p] )</td>
<td>0.0347</td>
<td>0.0449</td>
<td>Table 6</td>
</tr>
<tr>
<td></td>
<td>( \text{Prob}[p \rightarrow n] )</td>
<td>0.1759</td>
<td>0.3703</td>
<td>Table 6</td>
</tr>
<tr>
<td></td>
<td>( \text{Prob}[b \rightarrow n] )</td>
<td>0.1419</td>
<td>0.1854</td>
<td>Table 6</td>
</tr>
<tr>
<td></td>
<td>( \text{Prob}[a \rightarrow n] )</td>
<td>0.0455</td>
<td>0.0290</td>
<td>Table 6</td>
</tr>
</tbody>
</table>

From the US Data

Employment

| \( \bar{h} \) | Hours worked | 0.38 | 0.41 | CPS |
| \( \pi_{n} \) | Productivity, nonusers | 1 | 1.49 | normalization |
| \( t \) | Income, non-employed | 0.079 | 0.129 | CPS |

Opioids

| \( \sigma \) | Rx usage, MME | 3.543.75 | 1,785.00 | MEPS |
| \( \bar{p} \) | Rx price/1,000 MME | 0.000123 | 0.000188 | MEPS |
| \( q \) | Street price/1,000 MME | 0.00213 | 0.00113 | Dasgupta et al. (2013)/NSDUH |
6.3 Parameters Values Chosen by Matching the Model with the 2015-2018 Cross-Sectional Data

The remaining model parameters specify preferences, the relative labor market productivities of abusers and addicts, and how opioid usage maps into the transitions from abuse to addiction and addiction to death. These parameters are chosen so that the model is consistent with the data on: the fractions of the US population that are misusers and addicts; misusers and addicts’ opioid consumptions, employments, and incomes; the transition probabilities from misuse to addiction and addiction to death; the cross-sectional elasticity of opioid consumption with respect to opioid prices; and the values of statistical lives for non-college and college individuals.

Leisure Shock Parameters

In the NSDUH, 70.5 percent of non-college nonusers between ages 18 and 64 are employed. Employment declines to 66.6 percent for misusers and to 51.2 percent for addicts. As all nonusers and prescription users work in the model, the employment rates of non-college misusers and addicts relative to nonusers, 94 and 73 percent, are targeted in the calibration. For college graduates, the employment rates of misusers and addicts, relative to nonusers, are 99 and 85 percent. These employment targets are used to determine the parameters of the Gumbel distributions for leisure shocks of abusers and addicts.\(^\text{15}\) The scale parameter for each leisure-shock Gumbel distribution, \(\xi_s\), for \(s = b, a\), is chosen to generate the observed fraction of misusers or addicts who work in each education group. Given \(\xi_s\), the mode parameter, \(\iota_s\), is selected so that the mean of the leisure shock distribution is normalized to 0.

Productivities for Misusers and Addicts

The employment patterns are mirrored in relative incomes; for the non-college educated, misusers have about 10 percent lower income than nonusers, while addicts’ incomes are only 67 percent of nonusers. For college graduates, the incomes of misusers and addicts are 91 and 87 percent of nonusers. Given the fraction of workers among abusers and addicts, their relative labor productivity levels, \(\pi_s\) for \(s = b, a\), are calibrated such that the observed relative income levels of misusers and addicts match those in the data for each education group. Recall that \(\pi_n\) is normalized to 1 for non-college nonusers and 1.49 for college nonusers.\(^\text{15}\)

\(^{15}\)The model’s statistics for the employment rates and labor productivities of misusers are constructed to be consistent with their data counterparts. In particular, the employment rates and labor productivities for misusers include both abusers in category \(b\) and first-time misusers in categories \(n\) and \(p\).
It is assumed that prescription users have the same productivity as nonusers, so, in each education group, $\pi_n = \pi_p$.

**Euphoria Shock Parameters**

Next, turn attention to the population fractions of misusers and addicts, and the transitions from misuse to addiction and addiction to death. The opioid euphoria shocks, $\varepsilon_s$ for $s = n, p$, like the leisure shocks, are distributed according to Gumbel distributions. Recall that in the data, for the non-college population, $\Gamma(\varepsilon_n^*) = 0.9966$ of nonusers and $\Gamma(\varepsilon_p^*) = 0.9689$ of prescription users do not misuse opioids, while the rest are misusers each period (Table 6). The fractions of non-misusers among nonusers and prescription users for college graduates are 0.9989 and 0.9510. Given the optimal decisions for $\varepsilon_n^*$ and $\varepsilon_p^*$, the shapes of the Gumbel distributions determine these fractions. Each scale parameter, $\zeta_s$, is chosen to match the population fractions. Then, given $\zeta_s$, the mode of each distribution, $\nu_s$, is set such that the mean of the euphoria shock is normalized to 0.

**Transitions to Addiction and Death**

According to the data, 2.32 percent of non-college and 0.69 percent of college misusers become addicts each period, while 2.12 percent of non-college addicts and 1.06 percent of college addicts die (Table 6). The parameters $\sigma_s$, for $s = a, d$, which control through equation (2) how opioid usage affects the transitions from abuse to addiction an addict to death, are chosen so that the transition probabilities for the model match the data.

**Preferences**

The preference parameters remain to be determined: specifically, the curvature, $\psi$, and weights, $\mu_s$, of the utility function for opioids for $s = n, p, b, a$; the utility cost of addiction, $\omega_a$; and the utility associated with death, $\delta$. Three sets of targets are used to discipline these parameters: opioid usage, the value of a statistical life, and the cross-sectional price elasticity of opioid demand.

(1) **Opioid Consumption.** The first set of targets is opioid consumption by misusers and addicts. Unfortunately, consumption data is limited mainly to prescription patients, so some bold assumptions have to be made to arrive at numbers that can be used for calibration. Glanz et al. (2019) study 14,898 patients with opioid therapy who were part of a large Colorado health care provider between 2006 and 2018. Among these patients, some 288 of them experienced opioid overdoses. A control group was created by matching these patients to similar patents who did not develop overdose problems. Table 10 shows the daily opioid
usage in MMEs during the 90 days prior to an overdose event. For the entire sample, the average daily opioid usage was 44.4 MME. For patients with overdose problems, the average daily usage was much higher at 80.5 MME.

According to Dowell, Tamara, and Chou (2016), in a national sample of Veterans Health Administration patients with chronic pain receiving opioids from 2004 to 2009, patients who died from opioid overdoses had been prescribed an average of 98 MME per day, while other patients had been prescribed an average of 48 MME per day. These numbers are in line with those reported by Glanz et al. (2019). Dowell, Tamara, and Chou (2016) also indicate that, “Clinicians should use caution when prescribing opioids at any dosage, should carefully reassess evidence of individual benefits and risks when considering increasing dosage to ≥50 morphine milligram equivalents (MME)/day, and should avoid increasing dosage to ≥90 MME/day or carefully justify a decision to titrate dosage to ≥90 MME/day.” For the model, daily usages of 50 MME for misusers and 90 MME for addicts are chosen as targets.

Table 10: Daily Opioid Usage, Patients with Prescriptions—Distribution %

<table>
<thead>
<tr>
<th>MME</th>
<th>Assigned Value</th>
<th>All (N=14,898)</th>
<th>Overdose (N=14,898)</th>
<th>Control (N=3,547)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20</td>
<td>10</td>
<td>33.3</td>
<td>17.1</td>
<td>30.6</td>
</tr>
<tr>
<td>21-50</td>
<td>35</td>
<td>40.5</td>
<td>23.7</td>
<td>29.4</td>
</tr>
<tr>
<td>51-100</td>
<td>75</td>
<td>16.4</td>
<td>24.6</td>
<td>19.1</td>
</tr>
<tr>
<td>100+</td>
<td>150</td>
<td>9.7</td>
<td>34.7</td>
<td>20.8</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>44.4</td>
<td>80.5</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Since the model period is a year, calculations have to be made to arrive at annual opioid consumption. In the NSDUH, misusers and addicts are also asked how many days in a month they misused opioids during the last month, as shown in Table 11. For non-college educated, opioids are misused 6.52 days per month by misusers and 13.13 days per month by addicts (21.74 and 43.75 percent of the time). Thus, for the non-college educated, the annual levels of opioid misuse are 0.2174 × 365 × 50 MME = 3,967.8 MME for misusers and 0.4375 × 365 × 90 MME = 14,372.5 MME for addicts. For the college educated, misuse of opioids occurs 4.76 days per month for misusers and 12.58 days per month for addicts (15.85 and 41.92 percent of the time). Therefore, for the college educated, annual opioid consumption is 0.1585 × 365 × 50 MME = 2,893.2 MME for misusers and 0.4192 × 365 × 90 MME = 13,772.0 MME for addicts.\(^{16}\)

\(^{16}\)On this, as noted above, the average yearly opioid consumption of prescription patients in MEPS is about 3,543.75 MME for the non-college educated and 1,789.00 MME for the college educated. In Galant et al. (2017) patients who did not develop overdose problems used about 44.4 MME per day or 16,190 MME per year if they were using opioids everyday, which is much higher than the MEPS numbers. The average
To summarize, in the model, the targeted level of opioid consumption for non-college misusers, whether they are first-time misusers in stages \(n\) or \(p\) or experienced misusers in stage \(b\), is 3,967.8 MME. The number for college misusers is 2,893.2 MME, or about 27 percent less. For addicts, the gap between college and non-college opioid consumption is 4 percent smaller, 13,772.0 MME ÷ 14,372.5 MME = 0.96.

<table>
<thead>
<tr>
<th>Days Misused</th>
<th>Assigned Value</th>
<th>Misuser, %</th>
<th>Addicts, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 5</td>
<td>2.5</td>
<td>62.63</td>
<td>24.94</td>
</tr>
<tr>
<td>5-9</td>
<td>7</td>
<td>16.24</td>
<td>18.55</td>
</tr>
<tr>
<td>10-14</td>
<td>12</td>
<td>8.97</td>
<td>13.61</td>
</tr>
<tr>
<td>15-19</td>
<td>167</td>
<td>3.70</td>
<td>14.44</td>
</tr>
<tr>
<td>20-30</td>
<td>25</td>
<td>8.46</td>
<td>28.46</td>
</tr>
<tr>
<td>AVERAGE</td>
<td></td>
<td>6.52</td>
<td>13.13</td>
</tr>
</tbody>
</table>

In the model, the opioid consumption of first-time users in stages \(n\) and \(p\) is determined by the generic static first-order condition (8),

\[ \mu_s(o - q)^{-\psi} = (1 - \mu_s)(1 - \eta)(\pi_s h - qo + I_s(q - p)q)^{-\rho} q, \text{ for } s = n, p, \]

with \(I_n \equiv 0\) and \(I_p \equiv 1\). There are two unknowns in this equation: the elasticity parameter for opioid utility, \(\psi\), and the weights on utility for opioids, \(\mu_n = \mu_p\). They are chosen so that first-time non-college and college misusers in the \(n\) and \(p\) stages consume 3,967.8 MME and 2,893.2 MME, respectively. The generic first-order conditions (11) and (14) that determine the consumptions of abusers and addicts are more involved. But, the same logic dictates that the levels of opioid consumption of abusers and addicts can be used to determine \(\mu_b\) and \(\mu_a\).

(2) Value of a Statistical Life. The second set of targets pertain to the value of a statistical amount in MEPS, however, reflects the fact that prescription patients do not necessarily use opioids all year long. Clearly, when going from daily usage to annual usage, an adjustment has to made for the frequency of use.
life. These are useful for determining the utility value of death, \(\delta\). The value of a statistical life (VSL) is a measure of the amount individuals are willing to pay to reduce their mortality risk by 100 percent. That is, according to the U.S. Department of Transportation, “when an individual is willing to pay $1,000 to reduce the annual risk of death by one in 10,000, she is said to have a VSL of $10 million.”\(^{17}\) The VSL prorates the willingness to pay (WTP) for a reduction in risk in a linear fashion: “The assumption of a linear relationship between risk and willingness to pay (WTP) breaks down when the annual WTP becomes a substantial portion of annual income, so the assumption of a constant VSL is not appropriate for substantially larger risks.” Moreover, this calculation does not give a dollar estimate of the value of life as “(w)hat is involved is not the valuation of life as such, but the valuation of reductions in risks.”

In the model, the interesting sources of risk are the transitions from abuse to addiction and from addiction to death. The probability of transiting between stage \(i\) and stage \(j\), \(\sigma_{ij}\), is given by

\[
\sigma_{ij} = S_{ij}(o) = \sigma_j \sqrt{o}, \text{ for } (i, j) = (b, a), (a, d).
\]

In particular, the risk of death is

\[
\sigma_{ad} = \sigma_d \sqrt{o}.
\]

Now, consider a small change in this risk. Since it is endogenous, hold \(o\) fixed at the benchmark value and let \(\sigma_d\) change to obtain some desired change in \(\sigma_d \sqrt{o}\). How much would a person be willing to pay out of current consumption to obtain this decline in risk? The amount they are willing to pay is informative about the utility obtained in death, \(\delta\), relative to utility while alive. This exercise could be done in any of the four stages: \(s = n, p, b, a\). Focus on the nonuser stage \(n\). Denote a nonuser’s expected lifetime utility before and after the decline in risk by \(N\) and \(N'\). After the reduction in \(\sigma_d\), the nonuser will change the level of their opioid consumption in the events where they use opioids. Presumably, they would increase it because the risk of death has fallen. Therefore, \(N'\) results from the optimization problem with the lower level of risk. A prime (\(^{'})\) superscript is added to variables to denote their values in the setting with reduced risk.

Let \(cv\) be the fraction of current income that a nonuser is willing to pay to reduce the probability of dying while being addicted. The compensating variation, \(cv\), must solve the

\(^{17}\)See Trottenberg and Rivkin (2013).
nonlinear equation

$$\Gamma(\varepsilon^*_n)\{U((1-cv)\pi_nh) + L_n(1-h) + \beta[(1-\sigma_{np})N' + \sigma_{np}P']\}$$

$$+ [1 - \Gamma(\varepsilon^*_n)]\{U((1-cv)\pi_nh - q\sigma') + O_n(\sigma' - \sigma) + E[\varepsilon_n|\varepsilon_n \geq \varepsilon'^*_n] + L_n(1-h)$$

$$+ \beta[(1-\sigma_{bn})B' + \sigma_{bn}N']\} = N,$$

where the terms on the lefthand side are all evaluated at the values that obtain in the setting with the reduced risk without the compensating differential; i.e., no re-optimization is involved on the lefthand side due to the lower level of income. The willingness to pay for a nonuser is defined by $WTP = cv\pi_nh$. For the beginning stage, the value of $cv$ is likely to be small; addiction is an unlikely event and it is off in the future. The equations that determine compensating variations for stages $p$, $b$, and $n$ are presented in Appendix E.

To calculate the VSL, the average WTP of alive individuals in the baseline economy is calculated for a small (4 percent) decline in death. Then, the VSL is given by the average WTP divided by the decline in the unconditional death probability. This is done separately for each education group. VSL’s of $9 million and $11.8 million are targeted for non-college and college graduates respectively. The targets are consistent with a mean VSL of $10 million and an income elasticity of the VSL of 0.5, which are in line with estimates in the literature—see Viscusi and Aldy (2003).

(3) Cross-Sectional Price Elasticity of Opioid Usage. The final set of targets that are used to determine the preference parameters are the estimates of the cross-sectional price elasticity of opioid usage. The price elasticity, in particular, helps to determine the utility cost of addiction, $\omega_a$. An excellent summary of the available evidence on this price elasticity is provided in the 2020 Economic Report of the President. The available estimates range from -0.40 to -1.5. The calibration targets the midpoint of this range, or a price elasticity of -0.95.

The calibrated parameters based on 2015-2018 cross-sectional data are presented in Table 12. The match between the model and data targets is provided in Table 13. The fit of the model to the data targets is excellent. The cross-sectional opioid price elasticity in the model at -0.88 is close to the midpoint of the range estimated in the literature.
### Table 12: Parameters, Calibrated using 2015-2018 Cross-Sectional Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Non-College</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \psi )</td>
<td>elasticity of opioid usage</td>
<td>1.652</td>
<td></td>
</tr>
<tr>
<td>( \mu_n = \mu_p )</td>
<td>utility weight on opioids</td>
<td>0.00131</td>
<td></td>
</tr>
<tr>
<td>( \mu_b )</td>
<td>utility weight on opioids</td>
<td>0.0182</td>
<td>0.0237</td>
</tr>
<tr>
<td>( \mu_a )</td>
<td>utility weight on opioids</td>
<td>0.870</td>
<td>0.333</td>
</tr>
<tr>
<td>( \zeta_n, \nu_n )</td>
<td>euphoria shock, nonusers</td>
<td>0.4160, -0.2401</td>
<td>0.0910, -0.0525</td>
</tr>
<tr>
<td>( \zeta_p, \nu_p )</td>
<td>euphoria shock, Rx users</td>
<td>0.7560, -0.4364</td>
<td>0.2406, -0.1389</td>
</tr>
<tr>
<td>( \xi_b, \iota_b )</td>
<td>leisure shock, abusers</td>
<td>1.760, -1.0159</td>
<td>0.471, -0.2719</td>
</tr>
<tr>
<td>( \xi_a, \iota_a )</td>
<td>leisure shock, addicts</td>
<td>1.360, -0.7850</td>
<td>1.200, -0.6927</td>
</tr>
<tr>
<td>( \pi_b )</td>
<td>relative productivity, abusers</td>
<td>0.934</td>
<td>0.895</td>
</tr>
<tr>
<td>( \pi_a )</td>
<td>relative productivity, addicts</td>
<td>0.841</td>
<td>0.986</td>
</tr>
<tr>
<td>( \sigma_a )</td>
<td>constant, ( \text{Prob}[b \to a] )</td>
<td>0.01165</td>
<td>0.00406</td>
</tr>
<tr>
<td>( \sigma_d )</td>
<td>constant, ( \text{Prob}[a \to d] )</td>
<td>0.00559</td>
<td>0.00286</td>
</tr>
<tr>
<td>( \delta )</td>
<td>utility associated with death</td>
<td>-50.80</td>
<td>-34.63</td>
</tr>
<tr>
<td>( \omega_a )</td>
<td>utility cost of addiction</td>
<td>4.004</td>
<td>1.840</td>
</tr>
</tbody>
</table>

### Table 13: 2015-2018 Cross-Sectional Data Targets

<table>
<thead>
<tr>
<th>Targets</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-College</td>
<td></td>
<td>College</td>
<td></td>
</tr>
<tr>
<td><strong>Opioid Consumption</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usage, first-time misusers, MME</td>
<td>3,967.8</td>
<td>3,967.8</td>
<td>2,901.6</td>
<td>2,893.2</td>
</tr>
<tr>
<td>Usage, abusers, MME</td>
<td>3,967.8</td>
<td>3,967.8</td>
<td>2,900.7</td>
<td>2,893.2</td>
</tr>
<tr>
<td>Usage, addicts, MME</td>
<td>14,372.3</td>
<td>14,372.5</td>
<td>13,772.4</td>
<td>13,772.0</td>
</tr>
<tr>
<td>Fraction non-misusers in ( n )</td>
<td>0.9966</td>
<td>0.9966</td>
<td>0.9989</td>
<td>0.9989</td>
</tr>
<tr>
<td>Fraction non-misusers in ( p )</td>
<td>0.9689</td>
<td>0.9689</td>
<td>0.9510</td>
<td>0.9510</td>
</tr>
<tr>
<td><strong>Transitions</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \text{Prob}[b \to a] )</td>
<td>0.0232</td>
<td>0.0232</td>
<td>0.0069</td>
<td>0.0069</td>
</tr>
<tr>
<td>( \text{Prob}[a \to d] )</td>
<td>0.0212</td>
<td>0.0212</td>
<td>0.0106</td>
<td>0.0106</td>
</tr>
<tr>
<td><strong>Employment (fraction)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All misusers/Nonusers</td>
<td>0.94</td>
<td>0.94</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Addicts/Nonusers</td>
<td>0.73</td>
<td>0.73</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td><strong>Income</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All misusers/Nonusers</td>
<td>0.90</td>
<td>0.90</td>
<td>0.91</td>
<td>0.91</td>
</tr>
<tr>
<td>Addicts/Nonusers</td>
<td>0.67</td>
<td>0.67</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td><strong>VSL (millions of 2018 dollars)</strong></td>
<td>8.9</td>
<td>9.0</td>
<td>11.9</td>
<td>11.8</td>
</tr>
<tr>
<td><strong>All</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross-Sectional Opioid price elasticity</td>
<td>-0.88</td>
<td>-1.5 to -0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### 6.4 Subjective Probability of Addiction, 2000-2010

Recall that the subjective probability of addiction is controlled by the parameter $\alpha$ in Equation (3). This parameter is selected using data covering the 2000-2010 period. The choice of this parameter does not influence the selection of the parameters based on 2015-2018 cross-sectional data. At the start of the opioid epidemic, it is unclear what people thought about the odds of addiction given the rosy beliefs by medical professionals in the pain management movement, such as Melnick (1990), and Purdue Pharma’s aggressive marketing campaign that minimized the risk of addiction. Note that 2010 is the peak year for Rx opioid dispensation as shown in Figure 3. After 2010 medical professionals were cognizant about the probability of addiction.\(^{18}\) Assume that post 2010 the objective and subjective probabilities coincide or that there is no misinformation; i.e., $\alpha = 1$. The parameter $\alpha$ for the period 2000–2010 is set such that model matches the change in deaths between 2010 and 2018, taking into account the observed changes in fundamentals, such as prices, Rx dosages, and the risk of death (further details are provided in Appendix D). Based on this calibration strategy, the non-college population understated the risk of addiction by 17.5 percent ($\alpha = 0.825$), while the college population was completely rational ($\alpha = 1$). Given individual behavior that is based on the subjective probability of addiction, the equilibrium number of addicts (and hence deaths) is governed by the objective probability of addiction.

### 7 Cross-State Validation Check: Evidence on OxyContin Access

In a recent paper, Alpert et al. (2022) exploit cross-state variation in exposure to OxyContin’s introduction due to differences in drug monitoring programs. When OxyContin was introduced to the market in 1996, some US states (California, Idaho, Illinois, New York, and Texas) had existing drug monitoring programs called Triplicate Prescription Programs, while others did not. These programs made prescribing opioids more difficult, reducing OxyContin sales significantly. Consequently, OxyContin distribution was about 50 percent lower

\(^{18}\)Purdue Pharma pled guilty to misbranding OxyContin as less addictive and less subject to abuse than other opioids in 2007 and in 2010 an abuse-deterrent formulation of OxyContin was released on the market.
in triplicate states in the years after its launch. Alpert et al.’s (2022) comparison between triplicate and non-triplicate states implies that a state without such a program could reduce opioid deaths by 44 percent by implementing one. The number of individuals misusing opioids would also decline by 50 percent. Is the model-implied relationship between opioid prescriptions access, on the one hand, and opioid misuse and deaths, on the other, consistent with this evidence?

In the model, the amount of prescription opioids distributed is given by the number of opioid prescription users times the level of opioids prescribed to them. A 50 percent lower distribution of prescription opioids can be implemented by reducing the number of prescription users, or the transition rate from the non-user state to the pain state, \( \sigma_{np} \), by 50 percent. Alternatively, it can be implemented by a 50 percent reduction in prescription opioid strength, \( o \). The first approach assumes that all of the decline in opioid prescription distribution is due to a reduction in the fraction of individuals who are prescribed opioids while the second assumes it is all due to a reduction in the amount of opioids each prescription-user is prescribed. The decline could also be due to some combination of the two, such as a 29 \((\approx 1 - \sqrt{0.5})\) percent decline in opioid prescription users and a 29 percent reduction in the amount of opioids each user is prescribed. Table 15 shows the results from reducing prescription opioid distribution when both \( \sigma_{np} \) and \( o \) are reduced equally.

According to Alpert et al. (2022), Purdue Pharma reduced OxyContin advertising in Triplicate states. More stringent prescribing laws together with less advertising of OxyContin may have led to lower rates of misinformation about opioid addiction risk in Triplicate states. Therefore, two sets of results are presented: one where misinformation in Triplicate states is the same as in the other states (i.e., \( \alpha = 0.825 \)) and one where there is no misinformation in Triplicate states (i.e., \( \alpha = 1 \)). The true value of \( \alpha \) must lie somewhere in between. The total number of deaths declines between 16.9 and 50.5 percent depending on the impact of less marketing and Triplicate prescribing laws on misinformation. The 44 percent decline estimated by Alpert et al. (2022) is in the middle of the range. As a non-targeted moment that exploits a very different source of variation in the data, these results provide further support for the calibrated model.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Year 2000</th>
<th>50% ↓ in Rx Opioid Distribution</th>
<th>( \alpha = 0.825 )</th>
<th>( \alpha = 1 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>17,449</td>
<td>14,501</td>
<td>8,632</td>
<td></td>
</tr>
<tr>
<td>Deaths</td>
<td>17,449</td>
<td>14,501</td>
<td>8,632</td>
<td></td>
</tr>
<tr>
<td>Decline (%)</td>
<td>16.9</td>
<td>50.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 15: Cross-State Validation Check
Figure 8: The Downward Spiral. A person’s expected lifetime utility sinks into the abyss as they advance through the various stages of opioid addiction.

8 Understanding the Downward Spiral

Every year between 2015 and 2018, an average of 40,641 individuals between ages 18 and 64 died of opioid overdoses. A large majority of them, 37,596, did not have a college degree. The rest, 3,045 of them, were college graduates. The benchmark economy matches these statistics exactly. The downward spiral from opioid usage is portrayed in Figure 8. It shows how the college- and non-college-educated individuals’ expected utilities steadily decline as they move through the stages of opioid addiction. The descent appears fairly gradual until one hits the addiction stage, and, of course, the loss in utility associated with death is large. While utility is always higher for college graduates, the relative utility values of death to nonuse are roughly the same for both types of individuals. The state-contingent preference structure adopted here captures the Becker and Murphy (1988) feature (tolerance or negativity) that utility declines with opioid usage.

Back in 2000, the number of opioid-related deaths was only 8,179 (7,549 deaths among non-college and 629 among college graduates). Between 2000 and 2018, more than 400,000 individuals between the ages of 18 and 64 died from opioid overdoses. What can account for the dramatic rise in opioid usage and overdose deaths during the last two decades? The model is now used as a quantitative laboratory to answer this question. Five candidates are entertained: namely, the fall in opioid prices, more powerful prescriptions, longer length prescriptions, higher death probability from opioid usage, and misinformation about the odds of addiction. Since the calibrated model is based almost exclusively on 2015-2018

19Opioid-overdose deaths are calculated using medical codes reported in death certificates. Glei and Preston (2020) estimate that drug-related deaths are about 2.2 times higher than drug-coded deaths, reflecting excess mortality from other causes affected by drug use.
cross-sectional data, it is not a forgone conclusion that it can explain the rise in opioid usage and deaths.

8.1 Decline in Opioid Prices

Start with the price of opioids. The price of opioids has declined drastically since the turn of the century. Between 2001 and 2013, the decline in the street price was about 60 percent (Figure 6), while the prescription prices had fallen by a factor of 5 (Figure 4). As a thought experiment for the model, imagine going back to 2000, when both the prescription prices, $q$, and the street prices, $p$, were higher. The high-opioid-price economy is summarized in column 2 of Table 16. Focus on non-college graduates. With higher prices, average opioid usage declines significantly from 365.6 to 119.7 MMEs, a fall of about 67 percent. The fall in average usage is partly driven by a drop in the number of misusers and addicts, the extensive margin of opioid usage; the share of misusers declines from 4.44 percent to 1.79 percent and the share of addicts from 1.32 percent to 0.57 percent. While opioid usage by misusers does not react much to higher prices, the use by addicts declines by about 38 percent.

The employment rates of misusers and addicts also increase. The rise in their employment rates together with the decline in the number of misusers and addicts leads to a drop in the fraction of non-college graduates who are non-employed by a factor of nearly four, from 0.61 to 0.17 percent. Finally, with higher prices there are only 12,662 deaths in contrast to 37,569 in the benchmark economy. Recall that in 2000, the actual number of non-college overdose deaths was 7,549. Hence, lower opioid prices can account for about 83 percent of the increase in overdose deaths among non-college graduates since 2000. The picture for college graduates is similar, with significant declines in the numbers of misusers and addicts as well as their opioid usage. College graduates, however, are less responsive to changes in prices, so lower opioid prices account for a smaller share, 38 percent, of their increase in overdose deaths.

8.2 More Powerful Prescriptions

Next, turn to the role of medical practices. In the benchmark economy, the opioid content of prescriptions, $o$, is 3,543 MME for the non-college educated and 1,785 for the college educated. Since 2000, while prices were falling, the average opioid prescription also became more potent; it increased by 72 percent, from 2,066 to 3,543 MME, for non-college graduates and by 34 percent, from 1,329 to 1,785, for college graduates.\(^\text{20}\) The effects of a lower $o$ are

\[^{20}\text{The changes are based on the average MME content of prescriptions in the first three survey years, 2000-2003, versus the benchmark values for the 2015-18 period in MEPS. See Nahin et al. (2019) for a similar analysis using MEPS.}\]
shown in column 3 of Table 16. Opioid usage does not react much to changes in $\phi$, and since 2000 only 0.76 percent of deaths for non-college and 0.23 percent of deaths for college graduates can be accounted by more powerful opioid prescriptions.

8.3 Longer Prescription Lengths

The changes in the transition probabilities between the nonuser and prescription states, $\sigma_{np}$ and $\sigma_{pn}$, are investigated next. These transition probabilities reflect the changing views of the medical profession on opioid prescriptions and their possible side effects. To calculate the changes in these transition probabilities, MEPS is utilized. The transitions from being a nonuser to a prescription user have been fairly stable since 2000. Thus, there was no real change in $\sigma_{np}$. In contrast, there has been a consistent decline in the $p$-to-$n$ transitions. While doctors were not more likely to write opioid prescriptions for nonusers, they became more likely to keep patients on opioids longer once they started using them. The decline in $\sigma_{pn}$ was about 16 percent for the non-college educated and 12 percent for college educated. The effects, documented in column 4 of Table 16, are small.

8.4 Higher Death Probabilities

In the 2015–2018 benchmark, 2.12 percent of non-college addicts and 1.06 percent of college addicts die each period. In the model, these probabilities depend on opioid usage, regulated by $S_{ad}(o) = \sigma_d \sqrt{o}$. The death probabilities among addicts were lower in 2000, 1.24 and 0.84, respectively, for non-college and college graduates. The increase in death probabilities since 2000 reflects the increasing prevalence of fentanyl, a powerful synthetic opioid. During the same period, naloxone, an opioid antagonist that can reverse an opioid overdose, also became widely available. Still, the rise in the death rates suggests that the effect of increased usage of fentanyl was more significant. In the benchmark economy, $\sigma_d$ is calibrated to match the death rates among addicts. Suppose $\sigma_d$ is lowered instead so that the death rates among addicts are the same as those observed in 2000. With lower death rates from opioids, as shown in column 4 of Table 16, opioid usage rises. In each education group, both the fractions of misusers and addicts plus their usage levels increase. However, the number of deaths decline, illustrating that the rise in the death rates of addicts since 2000 can alone account for 22 percent of the rise in non-college deaths and 6 percent of the rise in college deaths.

21 The calculations are again based on a comparison between the first three survey years, 2000-2003, and the benchmark years, 2015-18, from MEPS.
8.5 Misinformation about the Odds of Addiction

Finally, imagine that misinformation about the addictive power of opioids persists to the 2015–2018 period. If the non-college population still believed that addiction probabilities were about 17.5 percent lower than they actually are in the final steady (i.e., if $\alpha = 0.825$ in the 2015–2018 steady state), opioid usage would increase, leading to higher deaths. The equilibrium number of addicts and deaths is determined by the objective probability of addiction, contingent upon the behavior of individuals that is governed by their subjective probability. The impact of misinformation is quite significant, leading to a rise in deaths equivalent to 85% of the change in non-college deaths since 2000. This mechanism does not affect the college population since the model estimates that they had no misinformation about the true probability of addiction.

8.6 All Five Factors Taken Together

The last column of Table 16 shows the outcome of concurrently implementing all five changes in the model. Through the eyes of the model, the combined effect of lower prices, increased prescription opioid distribution, higher death rates for addicts, and declining misinformation accounts for 73 percent of the rise in deaths among the non-college population and 49 percent of the rise in deaths among college graduates. Figure 9 summarizes the decomposition of the increases in opioid deaths across the different factors.

According to the model, the combination of all five factors generates a significant rise in non-employment. Non-employment among those without a college degree increases by a factor of 3 from 0.29 to 0.61 percent, and the number of college graduates not working increases by 50 percent. Recall that in the model, nonusers and prescription users always work. Thus, the increase in non-employment in the model is due entirely to a mixture of increases in the number of abusers and addicts in combination with decreases in their labor supply. Taking college and non-college graduates together, the total fraction non-employed ratchets up by 0.22 percentage points from 0.21 to 0.44 percent. In other words, according to the model, the impact of the changes in opioid prices, prescribing behavior, death rates, and misinformation since 2000 on the number and labor supply of abusers and addicts led to a 0.22 percentage point increase in the non-employment rate.\textsuperscript{22}

\textsuperscript{22}There may be additional labor supply effects of the opioid crisis, such as the effects on the labor supply of prescription users, which the model is silent about. In this sense, the impact of the opioid crisis on aggregate employment in the model can be thought of as a lower bound. Consistent with this view, the model’s predicted effect is on the lower end of the estimated effects in the literature that range from findings of a very small positive effect to a rise in opioid usage over this period reducing labor-force participation by 2.6 percentage points [see Aliprantis, Fee, and Schweitzer (2019), who summarize the literature, and Powell (2021)].
9 Medical Advances through the Lens of the Model

How would opioid consumption and, as a result, the number of deaths change if individuals face a lower probability of addiction or death? Recall that the transitions in the model from abuse to addiction and addiction to death are given by $\sigma_{ba} = \sigma_a \sqrt{o}$ and $\sigma_{ad} = \sigma_d \sqrt{o}$. For the transition from abuse to addiction set $\alpha = 1$. Both of these transitions are endogenous, depending on current usage, $o$. To undertake these experiments, the constants $\sigma_a$ and $\sigma_d$ will be lowered in turn. The experiments will focus on the non-college population.
9.1 Probability of Death

Start with the probability of death for addicts. In the benchmark economy, \( \sigma_d \) is 0.00559 for the non-college educated. Suppose \( \sigma_d \) is lower, i.e., for a given level of \( o \), individuals are less likely to die. This can represent, for example, the introduction of naloxone, an opioid antagonist that can reverse an opioid overdose. Naloxone was patented in 1961 and approved for opioid overdose in the United States in 1971. There are two forms of naloxone: a nasal spray (known as Narcan that was approved in 2015, with a generic version arriving in 2019) and an auto-injector. Between 2010 and 2014, naloxone access increased significantly in the United States. People can use it without medical training or authorization according to the NIDA (2021). In a landmark study, Walley et al. (2013) compare the implementation of overdose education and nasal naloxone distribution programs in different communities in Massachusetts, comparing high and low implementation communities with those with no implementation. They show that opioid overdose death rates are 27 to 46 percent lower in communities with a naloxone program. Albert et al. (2011), based on data from a rural county in North Carolina, also find that the overdose death rate fell by about 38 percent following the introduction of an overdose-prevention program that included the distribution of naloxone.

Figure 10 shows how the number of non-college deaths (upper panel) declines with \( \sigma_d \). The plot also displays how much a non-college-educated person would be willing to pay in terms of the average compensating variation across states, \( CV \), to reduce the probability of dying from opioid usage. While the number of deaths declines as \( \sigma_d \) falls, the number of opioid users (misusers and addicts) and their opioid consumption increases. Hence, the monotone decline in deaths with a drop in \( \sigma_d \) is not a forgone conclusion. A 50 percent
Figure 10: Changes in the probability of dying as regulated by $\sigma_d$. For deaths, users (misusers and addicts), and opioid consumption, the values for the benchmark equilibrium are set to 100.

decline in the probability of death, for example, increases users by about 14 percent and the amount of consumption conditional on usage by 8 percent. The number of deaths is lower by about 34 percent. When the probability of death is zero, the number of users increases by 36 percent. Yet, this is still only 8 percent of the non-college population, instead of 6 percent as in the benchmark economy. Even absent the risk of death, abusing opioids is not costless in the world of the model because addicts have lower labor market income and suffer a utility cost, $\omega_a$. Interestingly, research by Doleac and Mukherjee (2021) suggests that increased access to naloxone may have in fact increased opioid consumption and emergency room visits, suggesting that naloxone, in and of itself, isn’t a cure for the opioid crisis.

9.2 Probability of Addiction

Next, turn to $\sigma_a$, which governs the probability of addiction for abusers. The benchmark value $\sigma_a$ is 0.01165 for the non-college population. A reduction in $\sigma_a$ to zero corresponds to a world of non-addictive opioids, as if Purdue Pharmacy’s claims about OxyContin were indeed true. The results of the experiment are shown in Figure 11. As the odds of addiction fall, the number of users (misusers and addicts) increases dramatically (upper panel). When the probability of addiction declines by 50 percent, the number of non-college users increases by more than four fold from 6 percent to about 25 percent. Yet, users consume lower amounts of opioids. This transpires because there are less addicts, who are relatively heavy users. The increase in users and decrease in usage conditional on using have opposite effects on death rates. Consequently, the number of deaths shows a $\cap$-shaped response to a decline in $\sigma_a$. With a 50 percent decline in the risk of addiction, the number of deaths more than
Figure 11: Changes in the probability of addiction as regulated by $\sigma_a$. For deaths, users (misusers and addicts), and opioid consumption, the values for the benchmark equilibrium are set to 100.

doubles due to the dramatic increase in users. Eventually, as the risk of addiction declines further, the lower number of addicts dominates the rise in usage, and the number of deaths starts declining. The figure also shows that a reduction in the addictive nature of opioids would be highly valued by the non-college educated. This transpires because they enjoy consuming opioids, just like alcohol. This topic is turned to now.

10 Value of Recreational Opioids

Individuals enjoy recreational opioids, as they do alcohol, marijuana, and tobacco. This makes controlling substance abuse difficult. What value do consumers place on recreational opioids? To think about this, imagine a world where the illicit consumption of opioids can be stamped out. Prohibition and the war on drugs suggest that this is impossible to do. In the lint-free model laboratory, however, this can be operationalized by setting the price of illegal opioids to infinity. The question is: How much would a consumer be willing to pay out of their current income to move from the world with no illicit consumption of opioids to the current situation with black market opioids?

The results are shown in Table 17. On average, a non-college individual is willing to pay $225.85 annually to remain in the current situation with black market opioids. This amounts to 0.52 percent of their current income. College-educated people would pay less. Also, prescription users place a higher value on illicit opioid consumption than non-users. This calculation does not factor in the cost of rehabilitation and the crime linked with illegal opioids. These factors would reduce the societal value of recreational opioids. It also does
Table 17: Value of Recreational Opioids

<table>
<thead>
<tr>
<th></th>
<th>Non-College</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-user</td>
<td>198.64</td>
<td>146.40</td>
</tr>
<tr>
<td>Prescription user</td>
<td>363.80</td>
<td>272.05</td>
</tr>
<tr>
<td>Average</td>
<td>225.85</td>
<td>159.99</td>
</tr>
</tbody>
</table>

not take into account the value that prescription opioids have in reducing pain; this would increase the consumer value of opioids.

11 Closing

There have always been opiate users in America. The elderly Benjamin Franklin is said to have been an addict. At the start of the 20th century, there were medical addicts using opium and morphine, and nonmedical addicts who smoked opium. Smoking opium was banned in 1909 by the Smoking Opium Exclusion Act. Additionally, at the turn of the century, physicians were becoming aware of the addictive nature of morphine and became less inclined to prescribe it. Alternative therapeutics came online that reduced the need for catch-all opioids. The 1914 Harrison Narcotics Act regulated and taxed the legal dispensation of narcotics. The Act resulted in about 25,000 doctors being arrested for prescribing narcotics to addicts. All of these factors led to the importation of heroin, which was relatively inexpensive and stronger. The government tried to circumvent this by passing the Anti-Heroin Act in 1924.

The 1960s and 70s saw a heroin epidemic. In response the Drug Enforcement Agency (DEA) was established in 1973. There might have been as many as 634,000 heroin addicts at the end of the 1970s, which translates to 3.09 addicts per 1,000 population. This is in the (upper-end) range of the 4.59 morphine addicts per 1,000 populace at the beginning of the century. The epidemic subsided as tastes switched to cocaine and marijuana. The price of cocaine fell rapidly during the 1980s. It cost 1/6th as much in 1987 as it did in 1980. In the 1990s physicians began to prescribe opioid-based drugs, such as OxyContin, to control pain. It soon became apparent that OxyContin was addictive. Hence, controls were placed on prescribing opioid-based painkillers such as OxyContin. This led to illegal imports of fentanyl, which were cheap and powerful.

There are some parallels between the opioid epidemic and Prohibition.\textsuperscript{23}

\textsuperscript{23}This discussion is based on Blum (2011), Miron and Zwiebel (1991), Thornton (1991), and Warburton
Amendment to the Constitution prohibited “the manufacture, sale, or transportation of intoxicating liquors.” It took effect in January 1920 and was rescinded by the 21st Amendment in December 1933. Upon enactment, alcohol consumption dropped to somewhere between 20 to 40 percent of its pre-Prohibition levels, as shown in Figure 12, left panel. By the end of Prohibition, it had grown back to about 60 to 70 percent of the pre-Prohibition levels due to the emergence of a black market for alcohol. This is similar to the emergence of black markets for heroin after opium was banned and for synthetic heroin after the crackdown on prescription opioids. During Prohibition the underground economy moved to more potent forms of alcohol, such as spirits, because this maximized profits—again, see Figure 12, left panel. The potency of bootlegged alcohol is estimated to have been 150 percent stronger than when it was legal. Many of the spirits came from industrial alcohol. The government mandated that industrial alcohol be denatured by adding ingredients to it, such as poisonous methyl alcohol. While bootleggers hired chemists to neutralize these ingredients, the alcohol still contained many contaminants. Dr Charles Norris, who was New York City’s first medical examiner, wrote in 1926:

The government knows it is not stopping drinking by putting poison in alcohol. It knows what bootleggers are doing with it and yet it continues its poisoning processes, heedless of the fact that people determined to drink are daily absorbing that poison. Knowing this to be true, the United States Government must be charged with the moral responsibility for the deaths that poisoned liquor causes, although it cannot be held legally responsible. Source: Blum (2011, p. 155).

Deaths from alcoholism rose throughout Prohibition and greatly exceeded the post-Prohibition levels. There were 2.2 deaths per 100,000 people between 1918 and 1919 and this rose to 3.9 deaths between 1927 and 1929. The increased potency of alcohol as well as contaminated products contributed to this, similar to today’s black market opioids. The homicide rate rose during the Prohibition era and fell immediately afterwards (Figure 12, right panel) and rose again with the War on Drugs.

To analyze the opioid epidemic, a model is constructed where there are two routes to recreational opioid usage. Some nonusers experiment with opioids for enjoyment, while others start opioids because they are suffering pain and end up misusing them for recreation. Abuse leads to addiction with some odds, and there is a chance that addiction results in death. The probabilities of addiction and death are increasing functions of the extent of opioid usage, a choice variable. The decisions to misuse opioids in the first place, and how much to use in the second, depend upon the price of opioids. Abusers and addicts also

(1932).
choose whether they want to work or not.

The developed framework is taken to the US data for both the college- and non-college-educated populations. The quantitative analysis has three key steps: The first step is the estimation of Markov chains characterizing the movements in and out of misuse and addiction, where Death is an absorbing state. In the second step, the model is calibrated to match the estimated transitions from the Markov chains for both the college- and non-college educated. The framework fits the US data well. A check is performed on the calibration, by examining whether the model’s prediction on the relationship between prescription opioid access and opioid deaths is consistent with cross-state evidence.

In the third step, the calibrated framework is then used to decompose the rise in opioid usage. The analysis suggests that drops in the prices of both Rx and illicit opioids combined with a rise in the death rates for addicts due to the shift in consumption towards more deadly fentanyl were primary drivers of the opioid epidemic. Misperception about the risk of becoming addicted was an important factor encouraging opioid usage in the early stages of the crisis. Increasing the dosage strengths of opioid prescriptions and keeping people who experience pain on them longer had a minimal impact. Last, the impact of medical interventions that reduce either the odds of becoming addicted or the probability of an addict dying are examined. Both types of interventions increase the number of opioid users because the risk of using opioids is lower. Lowering the odds of becoming addicted can increase the number of deaths because the number of users rises dramatically. Despite this, both types of interventions are valued by consumers.

Figure 12: Prohibition, 1920-1933. The left panel illustrates the rise in alcohol consumption throughout the Prohibition era. Also shown is the shift in expenditure away from beer and wine toward spirits. After prohibition expenditure reverted back to the pre-Prohibition pattern (somewhere between 40 and 50 percent). The rise in homicide rate during prohibition is displayed in the right panel. Sources: Warburton (1932, Tables 1, 30, and 86) and Carter et al. (2006, Series Ab951)
An interesting topic for future research is the relationship between opioid addiction and labor-force participation. Opioid addicts have lower labor-force participation rates than nonusers and prescription users. Greenwood, Guner, and Kopecky (2022) report that increased substance abuse during the COVID-19 pandemic may account for between 9 and 26 percent of the decline in prime-age labor-force participation between February 2020 and June 2021. Some researchers, such as Case and Deaton (2020), feel that increased substance abuse results from the despair of poor economic conditions. Others, such as Mulligan (2022), argue that generous disability and unemployment benefits have encouraged drug use and a drop in labor-force participation. This topic is ripe for examination through the lens of a structural model.

References


A Appendix: Data

A.1 The National Survey on Drug Use and Health

The National Survey on Drug Use and Health (NSDUH) is an annual nationwide survey that provides national and state-level data on the use of tobacco, alcohol, illicit drugs (including the non-medical use of prescription drugs), and mental health in the United States. The survey is representative of the age 12 and over civilian non-institutionalized population of the United States for each state and the District of Columbia (D.C.). Every year approximately 70,000 individuals are randomly selected from all over the United States and asked to participate. The survey collects information from households, non-institutionalized group quarters (e.g., shelters, rooming houses, dormitories), and civilians living on military bases. The NSDUH is directed by the Substance Abuse and Mental Health Services Administration (SAMHSA), an agency in the U.S. Department of Health and Human Services (HHS).

In the NSDUH, an individual can be a user or a nonuser of an opioid prescription pain reliever (PPR) or heroin based on opioid usage during the previous 12 months. The PPR users are then classified as legal users or misusers, while all heroin users are misusers by default. Some misusers develop use disorder, while others are just casual misusers. The misuse of prescription drugs is defined as use in any way that is not directed by a doctor during the last 12 months—i.e., without a prescription, use in greater amounts than prescribed, more often than prescribed, longer than prescribed, or in any other non-directed way. If a respondent is identified as a misuser, then they are asked further questions to determine whether
They developed a substance use disorder (SUD). SUDs are impairments caused by recurrent use, such as health problems, disabilities, and failure to meet major responsibilities at work, school, or home. A person with a SUD can be a dependent or an abuser, following the criteria specified in the *Diagnostic and Statistical Manual of Mental Disorders* (DSM–5) by the American Psychiatric Association. There are seven dependence criteria based on activities during the 12 months prior to the interview, and if someone fulfills more than three, they are classified as a dependent:

1. Spent a lot of time engaging in activities related to use of the drug.
2. Used the drug in greater quantities or for a longer time than intended.
3. Developed tolerance to the drug.
4. Made unsuccessful attempts to cut down on the use of drug.
5. Continued to use the drug despite physical health or emotional problems associated with use.
6. Reduced or eliminated participation in other activities because of use of the drug.
7. Experienced withdrawal symptoms when respondents cut back or stopped using the drug.

Furthermore, people who did not meet the dependence criteria are classified as having developed an abuse for that drug if they report one or more of the following:

1. Problems at work, home, or school because of use of the drug.
2. Regularly using the drug and then doing something physically dangerous.
3. Repeated trouble with the law because of use of the drug.
4. Continued use of the drug despite problems with family or friends.

In the empirical analysis, anyone who has dependence or abuse for prescription opioids or heroin are labeled as *addicts*. If someone is misusing a prescription opioid or heroin but is not an addict, they are simply labeled as *misusers*. To obtain a larger sample size, four surveys from 2015 to 2018 are used. The sample is restricted to individuals between ages 18 and 64 who are not students.

Table 18 shows the shares of males and employed people conditional on their opioid usage category and education (the top two panels). It also gives the shares of the non-college- and
college-educated in the total population conditional on their opioid usage category (the bottom panel). The income distribution conditional on usage is shown in Table 19. To calculate the average incomes for calibration purposes, the values $5,000, $15,000, $25,000, and $44,000 are assigned to the first four income brackets. The value for the last bracket, $91,500, is chosen so that the average income for the sample is equal to the average value for individual income in the 2016 Current Population Survey (around $43,500).

Table 18: NSDUH, Population Characteristics, 18-64

<table>
<thead>
<tr>
<th></th>
<th>Non-College</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Gender (% male)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-users</td>
<td>53.22</td>
<td>48.53</td>
</tr>
<tr>
<td>Misusers</td>
<td>57.67</td>
<td>44.19</td>
</tr>
<tr>
<td>Addicts</td>
<td>61.65</td>
<td>54.86</td>
</tr>
<tr>
<td>Total Population</td>
<td>50.77</td>
<td>46.64</td>
</tr>
<tr>
<td><strong>Employed (%)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-users</td>
<td>70.54</td>
<td>86.23</td>
</tr>
<tr>
<td>Misusers</td>
<td>66.62</td>
<td>85.45</td>
</tr>
<tr>
<td>Addicts</td>
<td>51.21</td>
<td>73.49</td>
</tr>
<tr>
<td>Total Population</td>
<td>67.22</td>
<td>85.25</td>
</tr>
<tr>
<td><strong>Education (%)</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-users</td>
<td>63.78</td>
<td>36.22</td>
</tr>
<tr>
<td>Misusers</td>
<td>74.74</td>
<td>25.26</td>
</tr>
<tr>
<td>Addicts</td>
<td>86.04</td>
<td>13.96</td>
</tr>
<tr>
<td>Total Population</td>
<td>66.75</td>
<td>33.25</td>
</tr>
</tbody>
</table>

Table 19: NSDUH, Income

<table>
<thead>
<tr>
<th></th>
<th>&lt; $10,000</th>
<th>$10,000</th>
<th>$20,000</th>
<th>$30,000</th>
<th>$50,000+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-$19,999</td>
<td>-$29,999</td>
<td>-$49,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Non-College</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-users</td>
<td>24.94</td>
<td>19.88</td>
<td>15.28</td>
<td>21.63</td>
<td>18.27</td>
</tr>
<tr>
<td>Misusers</td>
<td>26.94</td>
<td>24.61</td>
<td>14.97</td>
<td>18.28</td>
<td>15.20</td>
</tr>
<tr>
<td>Addicts</td>
<td>39.15</td>
<td>26.55</td>
<td>12.76</td>
<td>12.50</td>
<td>9.04</td>
</tr>
<tr>
<td>Total Population</td>
<td>23.53</td>
<td>20.82</td>
<td>14.92</td>
<td>20.84</td>
<td>17.88</td>
</tr>
<tr>
<td><strong>College</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-users</td>
<td>10.79</td>
<td>6.68</td>
<td>7.13</td>
<td>18.80</td>
<td>56.42</td>
</tr>
<tr>
<td>Misusers</td>
<td>9.03</td>
<td>10.03</td>
<td>11.23</td>
<td>22.87</td>
<td>46.84</td>
</tr>
<tr>
<td>Addicts</td>
<td>13.46</td>
<td>12.28</td>
<td>8.34</td>
<td>20.83</td>
<td>45.09</td>
</tr>
<tr>
<td>Total Population</td>
<td>10.38</td>
<td>7.19</td>
<td>7.24</td>
<td>19.24</td>
<td>55.96</td>
</tr>
</tbody>
</table>
A.2 The Medical Expenditure Panel Survey

The Medical Expenditure Panel Survey (MEPS) provides the most comprehensive data source on the cost and use of health care and health insurance coverage in the United States. The survey is conducted by the United States Census Bureau for the Agency for Healthcare Research and Quality (AHRQ), part of the Department of Health and Human Services. It has two major components: the Household Component and the Insurance Component. The Household Component is used in the analysis. It contains extensive information on demographic characteristics, health conditions, health status, usage of medical services, access to care, satisfaction with care, health insurance coverage, income, and employment. Information is provided at both the individual and household levels, supplemented by information from their medical providers. The survey has a rotating panel structure in which each individual is interviewed five times during two years and then replaced. The sample includes about 31,000 individuals per year, with some variation across years, and is representative of the US population.

The empirical analysis is based on surveys from 2000 to 2018. The sample is restricted to individuals between the ages of 18 and 64 who are not students. An individual is characterized as having pain/prescription if they report having any opioid prescription. For those with opioid prescriptions, average per-capita morphine milligram equivalent (MME) consumption and per-capita out-of-pocket expenditure on opioid prescriptions are calculated. Using the panel dimension, the transitions between the pain/prescription and no-pain/no-prescription states are calculated by counting the number of people who move across these states between two consecutive years. The data used from the MEPS for the calibration is summarized in Table 20.
### Table 20: MEPS, Opioid Prescription Use

<table>
<thead>
<tr>
<th></th>
<th>Prescription Users (%)</th>
<th>Num. of Prescriptions (per person)</th>
<th>Usage, ( \rho ) (MME)</th>
<th>Out of Pocket Exp. ($, per person)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>10.66</td>
<td>6.90</td>
<td>0.38</td>
<td>0.16</td>
</tr>
<tr>
<td>2001</td>
<td>12.28</td>
<td>8.21</td>
<td>0.38</td>
<td>0.18</td>
</tr>
<tr>
<td>2002</td>
<td>10.91</td>
<td>8.21</td>
<td>0.37</td>
<td>0.18</td>
</tr>
<tr>
<td>2003</td>
<td>8.64</td>
<td>5.74</td>
<td>0.29</td>
<td>0.16</td>
</tr>
<tr>
<td>2004</td>
<td>13.38</td>
<td>9.23</td>
<td>0.48</td>
<td>0.23</td>
</tr>
<tr>
<td>2005</td>
<td>15.62</td>
<td>11.07</td>
<td>0.56</td>
<td>0.29</td>
</tr>
<tr>
<td>2006</td>
<td>15.89</td>
<td>12.03</td>
<td>0.58</td>
<td>0.33</td>
</tr>
<tr>
<td>2007</td>
<td>18.97</td>
<td>10.37</td>
<td>0.58</td>
<td>0.27</td>
</tr>
<tr>
<td>2008</td>
<td>15.68</td>
<td>11.30</td>
<td>0.67</td>
<td>0.29</td>
</tr>
<tr>
<td>2009</td>
<td>16.09</td>
<td>11.72</td>
<td>0.68</td>
<td>0.30</td>
</tr>
<tr>
<td>2010</td>
<td>16.08</td>
<td>11.05</td>
<td>0.80</td>
<td>0.28</td>
</tr>
<tr>
<td>2011</td>
<td>17.35</td>
<td>11.43</td>
<td>0.74</td>
<td>0.25</td>
</tr>
<tr>
<td>2012</td>
<td>16.84</td>
<td>10.01</td>
<td>0.69</td>
<td>0.27</td>
</tr>
<tr>
<td>2013</td>
<td>16.51</td>
<td>11.16</td>
<td>0.68</td>
<td>0.29</td>
</tr>
<tr>
<td>2014</td>
<td>17.24</td>
<td>10.98</td>
<td>0.63</td>
<td>0.31</td>
</tr>
<tr>
<td>2015</td>
<td>13.89</td>
<td>11.14</td>
<td>0.51</td>
<td>0.22</td>
</tr>
<tr>
<td>2016</td>
<td>11.67</td>
<td>10.09</td>
<td>0.49</td>
<td>0.20</td>
</tr>
<tr>
<td>2017</td>
<td>11.00</td>
<td>7.98</td>
<td>0.50</td>
<td>0.24</td>
</tr>
<tr>
<td>2018</td>
<td>14.43</td>
<td>7.52</td>
<td>0.57</td>
<td>0.25</td>
</tr>
</tbody>
</table>

### A.3 The Centers for Disease Control and Prevention (CDC)–Vital Statistics

The number of opioid overdose deaths are calculated using the CDC’s “Mortality Multiple Cause Files.” The following International Classification of Disease (ICD) codes are used to calculate opioid overdose deaths: T40.0, T40.1, T40.2, T40.3, T40.4, and T40.6. For deaths from specific opioids, the following classifications are used: Heroin (T40.1), Prescription (T40.2, T40.3), Synthetic (T40.4), and Other opioids (T40.6). The number of opioid overdose deaths is reported in Table 21. Note that the sum of deaths from the different opioids columns can be larger than those from the “Any” column since fatalities can result from using multiple types of opioids.
Table 21: Vital Statistics, Number of Opioid Overdose Deaths

<table>
<thead>
<tr>
<th>Year</th>
<th>Any</th>
<th>Heroin</th>
<th>Prescription</th>
<th>Synthetic</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>7189</td>
<td>626</td>
<td>1835</td>
<td>91</td>
<td>3025</td>
</tr>
<tr>
<td>2000</td>
<td>7549</td>
<td>629</td>
<td>1736</td>
<td>87</td>
<td>3338</td>
</tr>
<tr>
<td>2001</td>
<td>8375</td>
<td>816</td>
<td>1668</td>
<td>90</td>
<td>4136</td>
</tr>
<tr>
<td>2002</td>
<td>10579</td>
<td>954</td>
<td>1948</td>
<td>118</td>
<td>5652</td>
</tr>
<tr>
<td>2003</td>
<td>11465</td>
<td>1048</td>
<td>1950</td>
<td>101</td>
<td>6536</td>
</tr>
<tr>
<td>2004</td>
<td>12185</td>
<td>1077</td>
<td>1755</td>
<td>94</td>
<td>7527</td>
</tr>
<tr>
<td>2005</td>
<td>13180</td>
<td>1189</td>
<td>1888</td>
<td>97</td>
<td>8432</td>
</tr>
<tr>
<td>2006</td>
<td>15621</td>
<td>1312</td>
<td>1971</td>
<td>87</td>
<td>10231</td>
</tr>
<tr>
<td>2007</td>
<td>16383</td>
<td>1448</td>
<td>2247</td>
<td>113</td>
<td>11306</td>
</tr>
<tr>
<td>2008</td>
<td>17322</td>
<td>1536</td>
<td>2855</td>
<td>145</td>
<td>11522</td>
</tr>
<tr>
<td>2009</td>
<td>18096</td>
<td>1536</td>
<td>3073</td>
<td>158</td>
<td>11923</td>
</tr>
<tr>
<td>2010</td>
<td>18642</td>
<td>1665</td>
<td>2857</td>
<td>142</td>
<td>12789</td>
</tr>
<tr>
<td>2011</td>
<td>20172</td>
<td>1758</td>
<td>4104</td>
<td>237</td>
<td>13272</td>
</tr>
<tr>
<td>2012</td>
<td>20436</td>
<td>1827</td>
<td>5501</td>
<td>355</td>
<td>12343</td>
</tr>
<tr>
<td>2013</td>
<td>22010</td>
<td>2008</td>
<td>7620</td>
<td>526</td>
<td>12144</td>
</tr>
<tr>
<td>2014</td>
<td>25172</td>
<td>2242</td>
<td>9782</td>
<td>623</td>
<td>12671</td>
</tr>
<tr>
<td>2015</td>
<td>29200</td>
<td>2509</td>
<td>10004</td>
<td>764</td>
<td>12997</td>
</tr>
<tr>
<td>2016</td>
<td>37477</td>
<td>3105</td>
<td>14248</td>
<td>908</td>
<td>14578</td>
</tr>
<tr>
<td>2017</td>
<td>42309</td>
<td>3377</td>
<td>14175</td>
<td>912</td>
<td>14416</td>
</tr>
<tr>
<td>2018</td>
<td>41398</td>
<td>3190</td>
<td>13662</td>
<td>861</td>
<td>12442</td>
</tr>
</tbody>
</table>

A.4 Figures

- Figure 1 reports the number of opioid overdose deaths involving different types of opioids. The underlying numbers come from Table 21 divided by the numbers of non-college- and college-educated people between the ages of 18 and 64.

- Figure 3 shows the number of opioid prescriptions per person (left panel) and the total amount of opioids used by those with a Rx measured in MME (right panel), as reported in Table 20.

- Figure 4 displays the opioid prescription price per MME. For each year, the total MME of all opioid prescriptions is calculated for the non-student population between the ages of 18 and 64. The division of the total expenditure for these prescriptions by the total MME gives the supply price. The division of total out-of-pocket (OOP) expenditure by the total MME gives the OOP price.

- Figure 5 shows how MME per capita is financed by different primary payers. The primary payer is defined as the party that covers the largest share of the prescription.
Primary payers include out-of-pocket, Medicare, Medicaid, other public agencies, and private insurance companies. The total MME from prescriptions is allocated to the primary payer.

- Figure 6 reports the price of illicit opioids, as reported in Figure 7.19 of the 2020 Economic Report of the President. The price is calculated as the weighted average of the street price of heroin and fentanyl, where weights are obtained by using the amounts of heroin and fentanyl seized by law enforcement agencies.

B Appendix: The Markov Chain in the Data and the Model

The first task is to construct a Markov chain representation of the US data for the model. The transition probabilities, \( \{T_{ij}\}_{ij} \), across the data categories, \( n, p, m, a, \) and \( d \), given by the model are

\[
T \equiv [i \rightarrow j]_{ij} \equiv \begin{bmatrix}
\frac{\Gamma(\varepsilon^*_n)(1 - \sigma_{np})}{\Gamma(\varepsilon^*_n)\sigma_{pn}} & \frac{\Gamma(\varepsilon^*_p)(1 - \sigma_{pn})}{\Gamma(\varepsilon^*_p)\sigma_{pn}} & [1 - \Gamma(\varepsilon^*_n)(1 - \sigma_{np}) + [1 - \Gamma(\varepsilon^*_p)]\sigma_{np}] \\
\tilde{e}_b[1 - S_{ba}(o)] + \tilde{e}_n + \tilde{e}_p\Gamma(\varepsilon^*_n)\sigma_{bn} & 0 & [1 - \Gamma(\varepsilon^*_n)]\sigma_{bn} + [1 - \Gamma(\varepsilon^*_p)](1 - \sigma_{pn}) \\
[1 - S_{ad}(o)]\sigma_{an}\Gamma(\varepsilon^*_n) & 0 & 1 - \Gamma(\varepsilon^*_n)
\end{bmatrix}, \tag{15}
\]

where

\[
T_{nm} \equiv \{\tilde{e}_b[1 - S_{ba}(o)] + \tilde{e}_n + \tilde{e}_p\}\{[1 - \Gamma(\varepsilon^*_n)]\sigma_{bn} + 1 - \sigma_{bn}\},
\]

with \( \tilde{e}_n, \tilde{e}_p, \) and \( \tilde{e}_b \) representing the fractions of misusers in model categories \( n, p, \) and \( b \):}

\[
\tilde{e}_n \equiv \frac{[1 - \Gamma(\varepsilon^*_n)]e_n}{[1 - \Gamma(\varepsilon^*_n)]e_n + [1 - \Gamma(\varepsilon^*_p)]e_p + e_b},
\]

\[
\tilde{e}_p \equiv \frac{[1 - \Gamma(\varepsilon^*_p)]e_p}{[1 - \Gamma(\varepsilon^*_n)]e_n + [1 - \Gamma(\varepsilon^*_p)]e_p + e_b},
\]

\[
\tilde{e}_b \equiv \frac{e_b}{[1 - \Gamma(\varepsilon^*_n)]e_n + [1 - \Gamma(\varepsilon^*_p)]e_p + e_b}.
\]
The ergodic distribution over the model’s categories \( e_n, e_p, e_b, e_a, \) and \( e_d \) is defined below.

To understand the above transition matrix, take the first element \( T_{nn} = \Gamma(e_n^*)(1 - \sigma_{np}) \). This means the fraction of current nonusers in the data category \( n \) who will remain nonusers, or in \( n \), next period. For this to occur in the model, a nonuser must remain pain free, which occurs with probability \( 1 - \sigma_{np} \), and then decide not to use, which happens with chance \( \Gamma(e_n^*) \). As another example, consider the transition probability from the data category \( p \) to category \( m \) or \( T_{pn} = [1 - \Gamma(e_n^*)]\sigma_{pn} + [1 - \Gamma(e_p^*)](1 - \sigma_{pn}) \). There are two ways that a prescription user can become a misuser next period in the model. First, they may revert to a pain-free nonuser but then decide to use opioids. This occurs with probability \( [1 - \Gamma(e_n^*)]\sigma_{pn} \). Second, they could remain in pain and misuse their prescription, which happens with odds \( [1 - \Gamma(e_p^*)](1 - \sigma_{pn}) \). Last, take the cell \( T_{na} = \tilde{e}_bS_{ba}(o) \), which is the transition from being a misuser, \( m \), into an addict, \( a \). A misuser who is in category \( b \) in the model can become an addict with chance \( S_{ba}(o) \). But, first-time misusers cannot immediately become addicts. Only the fraction \( \tilde{e}_b \) of misusers in the data can become addicts in the model. When mapping the model into the data, the probability \( S_{ba}(o) \) must be adjusted downward by \( \tilde{e}_b \) to account for this fact. The other elements of \( T \) can be interpreted in a similar fashion.

A Markov chain representation of the schematic in Figure 7 for the model is now presented. This differs from the model’s Markov chain representation of the US data because the classifications of nonuser, prescription user, abuser/misuser, addict, and death states are different. The transition probabilities across the model states \( n, p, b, a, \) and \( d \) are

\[
E \equiv \{i \rightarrow j\}_{i,j}
\equiv
\begin{bmatrix}
\Gamma(e_n^*)(1 - \sigma_{np}) + [1 - \Gamma(e_n^*)]\sigma_{bn} & \Gamma(e_n^*)\sigma_{np} & [1 - \Gamma(e_n^*)](1 - \sigma_{bn}) & 0 & 0 \\
\Gamma(e_p^*)\sigma_{pn} + [1 - \Gamma(e_p^*)]\sigma_{bn} & \Gamma(e_p^*)(1 - \sigma_{pn}) & [1 - \Gamma(e_p^*)](1 - \sigma_{bn}) & 0 & 0 \\
[1 - S_{ba}(o)]\sigma_{bn} & 0 & [1 - S_{ba}(o)](1 - \sigma_{bn}) & S_{ba}(o) & 0 \\
[1 - S_{ad}(o)]\sigma_{an} & 0 & 0 & [1 - S_{ad}(o)](1 - \sigma_{an}) & S_{ad}(o) \\
1 & 0 & 0 & 0 & 0 \\
\end{bmatrix}.
\]

The ergodic steady state, \( e = [e_n, e_p, e_b, e_a, e_d] \), associated with this Markov chain solves

\[
e = eE.
\]

The generic Markov transition matrix for the data estimation is
\[ T \equiv [i \to j]_{i,j} \]
\[= \begin{bmatrix}
T_{nn} = 1 - T_{np} - T_{na} & T_{np} & T_{na} & 0 & 0 \\
T_{pn} & T_{pp} = 1 - T_{pn} - T_{pm} & T_{pa} & 0 & 0 \\
T_{an} & 0 & T_{aa} = 1 - T_{an} - T_{ma} & T_{ma} & 0 \\
T_{dn} & 0 & T_{dn} = T_{an}(1 - T_{dn})/T_{dn} & T_{dn} = 1 - T_{an} - T_{ad} & T_{ad}
\end{bmatrix}. \quad (17) \]

Each cell in generic matrix (17) is a function of model parameters as is shown in matrix (15). The model imposes cross-parameter restrictions on the values of \( T_{an} \) and \( T_{dn} \) that can be derived from matrix (15). For instance, the restriction on \( T_{an} \) is due to the fact that cell (4,3) in matrix (15), which contains the element \([1 - S_{ad}(o)]\sigma_{an}[1 - \Gamma(\varepsilon^*_n)]\), can be written as cell (4,1), or \([1 - S_{ad}(o)]\sigma_{an}\Gamma(\varepsilon^*_n)\), multiplied by 1 minus cell (5,1), or \(1 - \Gamma(\varepsilon^*_n)\), and divided by cell (5,1), or \(\Gamma(\varepsilon^*_n)\). Similar manipulations imply the restriction on \( T_{dn} \).

Once the entries in matrix (17) are filled, the parameters in the model’s matrix representation of the data (15) can be recovered. First note that \(\sigma_{pn} = T_{pn}/\Gamma(\varepsilon^*_n)\), \(\sigma_{np} = T_{np}/\Gamma(\varepsilon^*_p)\), and \(\sigma_{an} = T_{an}/[T_{dn}(1 - T_{ad})]\). These three equations, together with \(\Gamma(\varepsilon^*_n) = T_{dn}\) and \(\Gamma(\varepsilon^*_p) = T_{pp}/(1 - \sigma_{pn})\), determine three exogenous transitions in the model: i.e., \(\sigma_{pn}, \sigma_{np},\) and \(\sigma_{an}\). They also determine \(\Gamma(\varepsilon^*_n)\) and \(\Gamma(\varepsilon^*_p)\), which are the fractions of nonusers and prescription users who do not misuse opioids. A value for \(S_{ad}(o) = T_{ad}\), the endogenous transition rate from addiction to death, is also determined. Last, two other items can also be determined from matrix (17); viz, \(S_{ba}(o)\), another endogenous model transition, and \(\sigma_{bn}\), an exogenous transition. Recovering these items involves solving two nonlinear equations in two unknowns,

\[ \bar{e}_b S_{ba}(o) = T_{na}, \]

and

\[ T_{nn} = \{\bar{e}_b[1 - S_{ba}(o)] + \bar{e}_n + \bar{e}_p\}{[1 - \Gamma(\varepsilon^*_n)]}\sigma_{bn} + 1 - \sigma_{bn}, \]

with \(\bar{e}_n, \bar{e}_p,\) and \(\bar{e}_b\) as defined above. The outcome of the mapping between the model’s transition matrix (15) and the estimated Markov chain (17) is presented in Table 6.

C. Appendix: Markov Chain Estimation, Alternative

Using the panel structure in the MEPS, it is possible to calculate the fraction of individuals who transit between states \(n\) and \(p\), \(T_{np}\) and \(T_{pn}\). The average values for the 2015-2018 period are presented in Table 22, together with other transitions from Table 4.
Table 22: Transitions, US Population

<table>
<thead>
<tr>
<th>Source</th>
<th>Non-College</th>
<th>College</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{np} MEPS</td>
<td>0.0721</td>
<td>0.0675</td>
</tr>
<tr>
<td>T_{pn} MEPS</td>
<td>0.6199</td>
<td>0.7277</td>
</tr>
<tr>
<td>T_{nm} NSDUH</td>
<td>0.0044</td>
<td>0.0033</td>
</tr>
<tr>
<td>T_{pm} NSDUH</td>
<td>0.0263</td>
<td>0.0313</td>
</tr>
<tr>
<td>T_{ad} NSDUH, CDC</td>
<td>0.0212</td>
<td>0.0106</td>
</tr>
<tr>
<td>T_{an} NSDUH, Medical Studies</td>
<td>0.0444</td>
<td>0.0287</td>
</tr>
</tbody>
</table>

With \( T_{np} \) and \( T_{pn} \) taken from the data, only two transition probabilities need to be determined: \( T_{mn} \) and \( T_{ma} \). The estimated Markov chains for the non-college and college (in italics) populations are

\[
T = \begin{bmatrix}
0.9235, & 0.9292 & 0.0721, & 0.0675 & 0.0044, & 0.0033 & 0 & 0 \\
0.6199, & 0.7277 & 0.3538, & 0.2410 & 0.0263, & 0.0313 & 0 & 0 \\
0.1188, & 0.1748 & 0 & 0.8616, & 0.8195 & 0.0195, & 0.0057 & 0 \\
0.0444, & 0.0287 & 0 & 0.0000, & 0.0000 & 0.9334, & 0.9607 & 0.0212, & 0.0106 \\
1, & 1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

The long-run transition probabilities, \( t \), connected with these Markov chains are reported in Table 23. The estimated values are \( T_{mn} = 0.1189 \) and \( T_{ma} = 0.0195 \) for the non-college population and \( T_{mn} = 0.1748 \) and \( T_{ma} = 0.057 \) for the college population.

Table 23: Opioid Usage, Fractions–Data and Markov Chain

<table>
<thead>
<tr>
<th>Nonuser</th>
<th>Prescription</th>
<th>Misuser</th>
<th>Addict</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{n}</td>
<td>T_{p}</td>
<td>T_{m}</td>
<td>T_{a}</td>
<td>T_{d}</td>
</tr>
<tr>
<td>Non-College Data</td>
<td>0.80688</td>
<td>0.13477</td>
<td>0.04479</td>
<td>0.01327</td>
</tr>
<tr>
<td>Markov Chain</td>
<td>0.8471</td>
<td>0.0945</td>
<td>0.0448</td>
<td>0.0133</td>
</tr>
<tr>
<td>College Data</td>
<td>0.87342</td>
<td>0.09182</td>
<td>0.03040</td>
<td>0.00432</td>
</tr>
<tr>
<td>Markov Chain</td>
<td>0.8869</td>
<td>0.0789</td>
<td>0.0298</td>
<td>0.0043</td>
</tr>
</tbody>
</table>

Compared to Table 5, the fit is worse. In the above Markov chain estimation, the transitions between states \( n \) and \( p \), \( T_{np} \) and \( T_{pn} \), are taken from MEPS. The target for the fraction of people in state \( p \), \( t_p \), is also borrowed from the same source. In the Markov chain these transitions and the fraction of people in state \( p \) are tightly linked. The above estimation has a hard time squaring these values: given the transitions taken from the data, there are too
few people in state \( p \). As a result, \( T_{np} \) and \( T_{pn} \) are taken as free parameters in the estimation in Section 5.

D 2010 Steady State

Table 24 shows differences in model parameters between the benchmark and the 2010 steady state.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2010</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p^* )</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>( q^* )</td>
<td>2.125</td>
<td>1</td>
</tr>
<tr>
<td>( \omega ) (MME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-College</td>
<td>5,168.90</td>
<td>3,543.75</td>
</tr>
<tr>
<td>College</td>
<td>2,692.00</td>
<td>1,785.00</td>
</tr>
<tr>
<td>( \sigma_{pn} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-College</td>
<td>0.1525</td>
<td>0.1759</td>
</tr>
<tr>
<td>College</td>
<td>0.3444</td>
<td>0.3703</td>
</tr>
<tr>
<td>( \sigma_{np} )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-College</td>
<td>0.0401</td>
<td>0.0347</td>
</tr>
<tr>
<td>College</td>
<td>0.0605</td>
<td>0.0449</td>
</tr>
<tr>
<td>( S_{ad}(\omega) )</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-College</td>
<td>0.0124</td>
<td>0.0212</td>
</tr>
<tr>
<td>College</td>
<td>0.0084</td>
<td>0.0106</td>
</tr>
</tbody>
</table>

*relative to benchmark value

E Appendix: Compensating Variations

Once again, let \( cv \) be the fraction of current income that an individual is willing to give up to reduce the probability of dying while being addicted. In the prescription-user stage, \( p \), the compensating variation solves

\[
\Gamma(\varepsilon_p^\star) \left\{ U((1 - cv)\pi_p h - pq) + L_p(1 - h) + \beta[(1 - \sigma_{pn})P' + \sigma_{pn}N'] \right\} \\
+ [1 - \Gamma(\varepsilon_p^\star)] \left\{ U ((1 - cv)\pi_p h - pq - q(o' - \omega)) + O_p(o' - \omega) + \mathbb{E}[\varepsilon_p \geq \varepsilon_p^\star] + L_p(1 - h) \right. \\
+ \beta[(1 - \sigma_{bn})B' + \sigma_{bn}N'] \right\} = P.
\]
The analogous formulae for the abuser, \( b \), and addict, \( a \), states are:

\[
\{ \Lambda(\lambda_0^a) \{ U \left( (1 - cv)\pi_a b - p_o - q(o' - o) \right) + O_a(o' - o) + L_a(1 - h) \\
+ [1 - S_{ba}(o')] \beta [(1 - \sigma_{bn}) B' + \sigma_{bn} N'] + S_{ba}(o) \beta A' \} \\
+ [1 - \Lambda(\lambda_0^a)] \{ U \left( t - cv \pi_a b - p_o - q(o' - o) \right) + O_a(o' - o) + L_a(1) + \mathbb{E}[\lambda_b \geq \lambda_0^a] \\
+ [1 - S_{ba}(o')] \beta [(1 - \sigma_{bn}) B' + \sigma_{bn} N'] + S_{ba}(o) \beta A' \} \} = B,
\]

and

\[
\{ \Lambda(\lambda_0^b) \{ U \left( (1 - cv)\pi_b h - p_o - q(o' - o) \right) + O_b(o' - o) + L_b(1 - h) \\
+ [1 - S_{ba}(o')] \beta [(1 - \sigma_{bn}) B' + \sigma_{bn} N'] + S_{ba}(o) \beta A' \} \\
+ [1 - \Lambda(\lambda_0^b)] \{ U \left( t - cv \pi_b h - p_o - q(o' - o) \right) + O_b(o' - o) + L_b(1) + \mathbb{E}[\lambda_b \geq \lambda_0^b] \\
+ [1 - S_{ba}(o')] \beta [(1 - \sigma_{bn}) B' + \sigma_{bn} N'] + S_{ba}(o) \beta A' \} \} = A.
\]

In the abuser and addict stages, \( cv \) is the fraction of current working income that the individual is willing to give up to obtain the reduction in risk.