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Discovering Place and Manner Features: What Can Be
Learned from Acoustic and Articulatory Data?

Ying Lin and Jeff Mielke

1 Introduction

1.1 Features and Innateness

The history of phonological features stems from the quest for a minimal clas-
sificatory system for speech sounds in all human languages (Jakobson et al.
1952). Partly due to the influence of information theory, early feature theory
took the position of assigning binary values to features. Feature theory took
a decisive turn with the study of sound patterns within the context of genera-
tive phonology (Chomsky and Halle 1968). Sounds with similar behavior in
phonological patterning were grouped into natural classes. In most cases, nat-
ural classes could be identified using sets of feature values shared by sounds
that are members of the natural class. Moreover, Chomsky and Halle argued
that the feature representation of speech sounds must be common to all hu-
mans, thus adding the innateness claim to the feature theory.

Although features have proven extremely useful for phonological analy-
sis, the innateness claim has been criticized on several grounds. The first line
of criticism comes from the perspective of language acquisition. Although
the innateness claim simplifies the input representation to infants, language-
specific distinctions of speech sounds still depend on identifying which fea-
tures are distinctive, which presumably hinges on the availability of mini-
mal pairs (Jakobson 1941). The minimal-pair perspective is largely inconsis-
tent with children’s input for language development (Charles-Luce and Luce
1990). Recent work on language acquisition has shown that children are
highly individualistic in their order of acquiring sounds and words (Vihman
1996). This result is unexplained by the theory that places a set of innate
features at the core of phonological acquisition. Second, phoneticians have
long questioned the psychological reality of features, partly because no pro-
posal has emerged about how phonological features can be transmitted through
processes of speech perception and production.1 The third type of criticism
arises within the phonological theory itself. For example, Mielke’s (2007) sur-
vey found that the feature systems that have been proposed do not predict the

1For example, in his last paper (Ladefoged 2005), Peter Ladefoged summarized his
criticisms of the innate feature theory.
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wide range of classes that actually occur. Hence innate features have failed to
achieve what they were designed to do: characterizing all the possible natural
classes.

1.2 A New Proposal: Feature Induction

In light of these three critiques, we take the position that many of the prob-
lems seen in the theory of innate features can be resolved by taking an induc-
tive approach to natural classes and distinctive features. The current paper is
mainly concerned with one aspect of this inductive approach: instead of look-
ing at sound patterning, we focus on how phonological features can be learned
from distributions within the phonetic input, based on the assumption that hu-
man learners can discover categories on the basis of sound distributions alone
(Maye et al. 2002).

Although our goal is seeking an alternative to the innate feature theory, it
should be noted that any inductive learning scheme cannot be separated from
assumptions about the innate bias of the learner. Our work is no exception.
In particular, we invoke the following assumptions as regards the nature of
phonological features.

First, we assume that the learner is biased towards an inherent hierarchi-
cal structure within natural classes. Consequently, we focus on phonological
features that can be associated with the contrast between natural classes at the
same level of the hierarchy. Although similar representational schemes have
appeared in formal phonology (Clements 2001, Dresher 2003), our work has a
significantly different emphasis since the hierarchical representations are em-
bedded in an inductive model that is capable of learning directly from phonetic
data.

Second, in pursuing feature induction, we have also made the simplifying
assumption that the phonetic input can be analyzed in terms of segment-sized
units. This assumption is not an essential aspect of the model, since prior work
has demonstrated that the segmental structure can also be induced from the
phonetic input (Lin 2005). Although the phonetic input aligned with segmental
units is fed to the learner, it is crucial that the phonemic categories of these
units are not available.

Our third assumption is that a phonological learner has access to a wide
variety of phonetic information. In particular, we have provided articulatory
and acoustic data to the learner to simulate the environment in which feature
induction takes place. One research question being explored in this paper is
whether the nature of the phonetic information has an effect on the type of
features induced from the data.
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Given the above three assumptions, we have argued for hierarchical clus-
tering as a supporting mechanism for feature induction. Using a hierarchical
mixture model, a tool for conducting statistical cluster analysis (section 2), we
demonstrate that a hierarchical clustering of the phonetic data reveals robust
phonetic distinctions within a hierarchy of natural classes, and that different
types of phonetic distinctions emerge from different sources of information.
Presumably, such distinctions serve as part of the basis on which feature in-
duction takes place. Perhaps less surprisingly, our results also indicate that
manner features are closely tied to acoustics (section 3), while place features
are closely tied to articulation (section 4), suggesting that two different types
of information are involved in the development of two different types of fea-
tures.

2 Methodology: Hierarchical Mixture Models

The finite mixture model is a tool of cluster analysis (McLachlan and Peel
2000). In a typical application, the data to be analyzed is generated from two
or more separate sources and then “mixed” together without indicating from
which source each data point is generated. The goal of mixture modeling is to
fit the following probability distribution, indicated by p(y|θ), to a set of data
that exhibits a categorical structure:

p(y|θ) = λ1f1(y|θ) + λ2f2(y|θ) + · · · + λMfM (y|θ) (1)

The symbol θ denotes the collection of unknown parameters in the model,
which includes all the categories. The number of mixture components is given
by M , a fixed integer. The distribution functions fi(y|θ), i = 1, · · · ,M each
characterize a separate category, or a component of the mixture. They are
usually chosen from the same family of distributions. The probability that a
sound is drawn from component m is λm, which is also part of the model pa-
rameter, and is subject to the constraint

∑
m λm = 1. Alternatively, one may

view λm as a prior probability, which determines the proportion of data that is
generated by the m-th component. Seeing λm as prior probability reflects the
assumption that a larger category is more likely to account for the data than a
smaller one, given the same likelihood.

As a special case of the finite mixture model, the hierarchical mixture
model allows embedding of smaller categories within larger ones. For exam-
ple, given three discrete categories, they can either be put into a one-level, flat
model, or another model with two levels, with each level distinguishing two
categories. These two options are illustrated in Figure 1.
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Figure 1: Two ways of modeling three categories with a finite mixture model; left: a
flat model; right: with a hierarchical model.

The latter—a hierarchical approach—is better suited for our goal since it
has the potential to discover the inherent hierarchical structure within phonetic
categories. For the hierarchical model in Figure 1, the probability function is
as follows:

p(y|θ) = λ1 [λ11f11(y|θ) + λ12f12(y|θ)] + λ2f2(y|θ), (2)

The prior weights must satisfy λ11 + λ12 = 1 and λ1 + λ2 = 1. Hence,
each level in the hierarchy can be regarded as a separate mixture model. In
the discussion to follow, all the clusters are labeled using a prefix coding, in
which the names of the clusters indicate their positions within the hierarchy.
For example, “11” denotes that the cluster is the left child of the left node on
the top level of the hierarchy. Note, however, that only the clusters on the leaf
nodes are associated with individual component models of the mixture. Inter-
mediate nodes (such as “1”) each represents a collection of models. Thus, the
hierarchical model allows us to analyze the result of clustering in a sequence
of steps, each focusing on a small number of clusters on the same level.

A fully specified hierarchical mixture model gives rise to clusters that can
be organized in a hierarchical manner. In order to obtain the cluster mem-
bership of each data point, a gradient categorization is realized through the
following quantity:

wi
y =

λi(θ)fi(y|θ)∑M
i=1 λj(θ)fj(y|θ)

∝ λi(θ)fi(y|θ), i = 1, · · · ,M (3)

Here the weight wi
y is a direct combination of the prior probability λi(θ)

and the likelihood fi(y|θ). Due to the similarity of (3) and the Bayes formula,
some also refer to wi

y as a posterior probability, i.e., the chance that a stimulus
y comes from each of the models in the mixture. We can represent the contri-
bution of each component towards the stimulus y as a vector (w1

y, · · · , wM
y ),
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where
∑

i wi
y = 1. This vector representation of categorization reflects the

fact that a stimulus can be ambiguous between different categories. When one
of wi

y , i = 1, · · · ,M is equal to 1 and the rest go to zero, then this gradient
representation is equivalent to a categorical one. For example, suppose we are
interested in the clusters in the first level: λ1 [λ11f11(y|θ) + λ12f12(y|θ)] and
λ2f2(y|θ). The category membership of each data point can be expressed with
a pair of numbers between 0 and 1 that add up to one. For example, while the
membership of a stimulus can only be either (0, 1) or (1, 0) under a categori-
cal scheme, mixture models allow for category memberships such as (0.5, 0.5)
(halfway between the two clusters) or (0.3, 0.7) (a slight preference towards
the second cluster).

Since the posterior probability can be interpreted as a “fraction” of the
data that belongs to each cluster, and all levels of the hierarchical model have
only two clusters (i = 1 or 2), we have used the following strategy in visual-
izing the results of the clustering: first, the fractions wi

y are calculated for all
tokens and all clusters. Then we performed a segment-by-segment analysis by
summing together all the fractions that belong to each cluster. For example,
for the hierarchical model in the right panel of Figure 1, if we are interested
in the top-level split of the clusters, this amounts to comparing the sum of
{w11

y + w12
y } with the sum of {w2

y}, across all the data points y. By placing
two subcategories at each level of the hierarchical mixture model, we have bi-
ased the learner towards finding a gradient version of binary features. In the
general case, three or more clusters can be placed on each level to capture the
notion of multi-valued features, although this option is not explored in this
paper.

The learning problem of our hierarchical mixture models is solved by
the Expectation-Maximization (EM) algorithm (Dempster et al. 1977), a stan-
dard tool for fitting such models. Two different instances of this algorithm
were used to train the mixture model for the acoustic and the articulatory
data, respectively. In actual implementation, the hierarchical mixture model
is gradually “grown” in a succession of steps, and finer-grained categories are
discovered within the coarse-grained ones discovered from the earlier steps
(details of this algorithm are discussed in Lin (2005)). After the algorithm
has converged, the posterior probability vector corresponding to each segment
is extracted, and a summary of the posterior probabilities is calculated to fa-
cilitate interpretations of the clusters and the features that distinguish those
clusters within the natural class hierarchy.
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3 Clustering Acoustic Data with a Hierarchical Mixture
Model

Acoustic data for the clustering experiment is taken from the TIMIT database
(Garofolo 1988), a phonetically transcribed corpus that has been used in much
speech research. It consists of read utterances recorded from 630 speakers
from 8 major regions of American English, of which we use the data from the
New England dialect region. Because the goal of TIMIT was to train phone-
based systems, the reading materials were chosen to be phonetically-balanced,
and all the data was manually transcribed by expert phoneticians. 4,230 con-
sonants from 22 speakers are used in the clustering experiment. The segments
are selected from the waveforms according to the time points included in the
expert transcriptions, but no labels are used in the learning phase of the model.
The phonetic transcriptions are only used later in the interpretation of the clus-
ters.

3.1 Mixture of Hidden Markov Models

Acoustic data impose several constraints on the mixture model used in the
clustering analysis. A speech sound is generally not stationary, but contains
multiple points of acoustic change. Moreover, a speech sound typically does
not have a fixed length, therefore making it difficult to map speech sounds
into a space with a fixed dimension. These observations are the major con-
straints on the mixture model for clustering acoustic data. An important tool
for modeling this type of data, used extensively in speech engineering, is the
hidden Markov model (HMM). HMM is essentially a Markov model equipped
with extra machinery to handle variability. The data is again assumed to be
generated in two steps: first, a state sequence is generated from the under-
lying/“hidden” Markov chain by following transitions of the chain; then the
observed data sequence is generated from the output distribution of each state.
In speech applications, it is common to specify a normal mixture output dis-
tribution for each state of the HMM. The present work uses a constrained
architecture of HMM that only allows left-to-right transitions, and all output
distributions are set to a mixture of two normal distributions2, each with a
diagonal covariance matrix (Rabiner and Juang 1993).

The HMM requires some acoustic modeling of the speech signal, which is
also called the front-end. The front-end used in this study is of a fairly standard

2Although the output distribution is also a mixture, it only models one time slice of
speech, and is at a different level than the mixture model of hidden Markov models.
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type: the cepstral coefficients in the Mel-frequency domain. Also standard in
speech engineering is the use of “delta” features for the purpose of capturing
the spectral change between successive analysis windows. The result of such
analysis is adding another 13 dimensions to the static cepstral vector, resulting
in 26 dimensions for each frame of short time-analyzed speech.

In order to combine the HMMs into a hierarchical mixture model, a learn-
ing algorithm that extends the standard HMM training was used (Lin 2005).
This algorithm starts by first clustering the average spectral vector of each seg-
ment with the K-means algorithm and Itakura-Saito metric (Rabiner and Juang
1993), and then improving the clusters through iterations of the Expectation-
Maximization algorithm.

3.2 Results of Clustering Acoustic Data

A three-level hierarchy of five consonant categories is obtained as the result
of clustering the TIMIT consonants with a mixture of hidden Markov models.
After the category membership is computed for each segment, a level-by-level
analysis of the hierarchy of clusters is carried out in the same manner as de-
scribed in Section 2. Figures 2–4 illustrate the segment-by-segment analysis
of these clusters, in a coarse-to-fine manner. This is reflected in the encoding
of the resulting clusters using the prefix coding. Limited by space, we only
discuss three of the four features that are associated with this hierarchy.

Figure 2 shows that the first clusters to emerge are separated along the
sonorant-obstruent dimension. Voiceless and strident obstruents are the most
extremely obstruent, while liquids, nasals, and glides are the most extremely
sonorant. In the middle are segments that are phonetically more ambiguous,
such as glottal consonants [h H P], which are treated ambiguously in phonol-
ogy as a result of their ambivalent patterning with obstruents and sonorants in
different languages. Also in the middle are most of the nonstrident voiced ob-
struents [g b D v], which are acoustically more like sonorants and also pattern
as such in some languages (Mielke 2007). This partition is more compatible
with an acoustic definition of [sonorant] (contra Chomsky and Halle (1968)),
which makes sense because it is based on acoustic data. The articulatory def-
inition of [sonorant] would group the glottals with sonorants, but because the
acoustic consequences of a supralaryngeal constriction with increased pres-
sure behind it are similar to those of a laryngeal constriction, glottals such as
[h] are on the obstruent side of center.
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Figure 2: The top-level partition of all consonants.

Figure 3: The second-level partition of Cluster 1 (obstruents).

The second-level partition among obstruents involves the strident-mellow
dimension (Figure 3). Stops are the most mellow, while sibilant fricatives
are the most strident. The middle ground is held by affricates, which are not
phonetically strident throughout, and non-strident fricatives, which are less
noisy than their strident counterparts but noisier than stops.
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The second-level partition among sonorants is shown in (Figure 4). In
general this partition contrasts nasals and acute glides with more grave ap-
proximants, although the glottal fricative and stop do not fit very well with
respect to this division.

Figure 4: The second-level partition of Cluster 2 (sonorants).

4 Clustering Articulatory Data

4.1 Collection of Articulatory Data

Our articulatory data used in this experiment is derived from simultaneous
audio, video, and ultrasound video recordings that were made while subjects
produced CVC sequences. The CVC stimuli contained all of the consonant
phonemes found in American English, with C1 always equal to C2. For each
consonant, there was a stimulus with each of the vowels /a 2 i/, and an addi-
tional set of stimuli contained only the vowels. For /h/ (which does not appear
in coda position in English) and /N/ (which does not appear in onset position),
phonotactically permissible CV and VC stimuli were used instead. Each stim-
ulus was elicited 10 times, with the exception of /aN 2N iN/ and /ha h2 hi/,
which were elicited 20 times each, in order to have 60 recordings of each con-
sonant (a fact which is not exploited further in this paper). The subject was a
male native speaker of American English.

The palate and tongue surfaces shown in the ultrasound images were
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traced using position information contained in the video image to combine
the two surfaces after correcting for head and/or transducer movement. A
point on each of the upper and lower lips was marked on the video image and
transformed into ultrasound head space. On the basis of the lip points and the
tongue and palate surfaces, the rest of the mid-sagittal oral cavity and pharynx
tract was filled in according to an estimate of the locations of the soft palate,
pharynx, and upper and lower teeth. This estimate allows cross-distances to be
measured or estimated for the length of the vocal tract (except the nasal cav-
ity) from the larynx to the lips. The result of these estimates is two surfaces
(the upper and lower surfaces of the vocal tract). Cross-distances between the
two surfaces were measured automatically. In the last step of pre-processing,
the cross-distance data is re-sampled to 60 dimensions using linear interpo-
lation. As examples, Figure 5 illustrates the original tongue tracings and the
pre-processed cross-distance data for two types of tokens, “k/ a” and “k/ i”.

Figure 5: Tracings of the tongue profile from the ultrasound images for [k]/ a and [k]/ i.

4.2 Mixture of Probabilistic Principal Component Analyzers

The articulatory data impose rather different kinds of constraints on the mix-
ture model. Because the preparation of the articulatory data involves signif-
icant hand-correction by a human expert, we have decided to associate each
consonant with one single frame of the imaging data, instead of a series of
images unfolding in time. Although this articulatory representation of conso-
nants eliminates the problem posed by time-series data, it is still necessary to
seek a proper way of reducing the dimension of the articulatory data, since
the dimensions of the vocal tract are highly correlated. Principal Component
Analysis (PCA) is such an approach that seeks a low-dimensional representa-
tion of the vocal tract during speech production (Story and Titze 1998): each
profile of the vocal tract is expressed as a linear combination of elementary
gestures (or “orthogonal modes/bases”) that alters the neutral shape of the
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vocal tract. By only considering the orthogonal modes/bases that contribute
to most of the total variance in the data, we are able to obtain a dimension-
reduced representation of the original data.

However, traditional PCA is not associated with a probabilistic function,
as required for mixture models. An alternative is the Probabilistic PCA
(Tipping and Bishop 1999). In the current experiment, we created a hierarchi-
cal mixture of PPCA’s by using Probabilistic PCA’s as components of the hi-
erarchical mixture model. For a fixed number of categories, the parameters of
this model are learned by the same type of EM algorithm (Tipping and Bishop
1999). In addition, the same coarse-to-fine search strategy is also adopted to
grow the mixture model to the desired size.

4.3 Results of Clustering the Articulatory Data

The total set of cross-distances data is used in the clustering experiment, based
on the hierarchical mixture of PPCA’s. The result is another 3-level hierarchy
of natural classes. The same analysis as in 3.2 is applied to the analysis of
these clusters as well, and part of the results are shown in Figure 6 and Figure
7.

The left panel of Figure 6 shows the split between consonants with a pha-
ryngeal or velar constriction and those with a constriction elsewhere. The right
panel provides a breakdown of the distribution of velar consonants with regard
to each vowel context, illustrating the fronting effect of [i] (but not [2 a]) on
velar stops in English. Figure 7 shows the split between consonants with a
primary alveolar, postalveolar, or palatal constriction and those without one.
Notice that interdentals group with the non-alveolar/non-palatal cluster, and
that [l], which involves alveolar and velar constrictions, does not cluster with
either group.

Figure 6: left: The top-level partition of all consonants; right: Distinction within each
different context of the velars.
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Figure 7: The second-level partition of non-velar consonants.

5 Discussion

In summary, we have presented an inductive approach to features as a revision
to the innate feature theory. Feature induction is seen as part of a clustering
problem in which the learner discovers a hierarchy of natural classes, a view
that is consistent with recent proposals in phonological acquisition. Rather
than taking features as innate and universal, the inductive approach depends
on the phonetic distributions within the target language, and induced features
are seen as specific to the phonetic inventory of each language. In addition,
ambiguous segments are assigned gradient memberships within a natural class
hierarchy. Hence, the inductive approach offers a solution to the challenges to
the innate feature theory.

The clustering of segments according to acoustic and articulatory data re-
sults in a number of familiar partitions of segments which have had innate fea-
tures proposed for them. The fact that phonetic dimensions which frequently
are exploited by phonological patterns can be learned from phonetic data alone
suggests that these dimensions do not need to be defined in Universal Gram-
mar (contra Chomsky and Halle (1968)). This is consistent with Stevens’s
(1989) identification of areas of acoustic-articulatory stability that correspond
to recurrent feature values (although with a different interpretation of the im-
plications of phonetic stability for the innateness of features).

The connections between sources of data and types of features (place-
articulatory vs. manner-acoustic) suggests that other differences can be found



DISCOVERING PLACE AND MANNER FEATURES 253

in these types of features, in terms of the types of sound patterns in which they
are involved. The observation that place features pattern differently from man-
ner features is well established in phonological theory in the form of Feature
Geometry (Clements 1985, Sagey 1986, Halle et al. 2000, Clements and Hume
1995), with place features hierarchically organized, often privative, and pat-
terning together, and manner features located in the root node, where they do
not pattern as constituents and are less involved in assimilation. The hierarchi-
cal organization of binary splits that are the result of clustering are reminiscent
of Feature Geometry hierarchies, but are derived by a model of unsupervised
learning. This model does not utilize information about phonological pattern-
ing, but only depends on distributions within phonetic data.
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