Document Type

Working Paper

Date of this Version



The goal of this design project was to find the most cost effective way of recovering pyridine and 3-methylpyridine from a given impurity stream with a specific finished goods quality. Due to the multiple azeotropes that the organic components in the feed had with water, we had to first explore different methods of removing water. We explored two different approaches in depth – pervaporation and azeotropic distillation. Both processes allowed us to break the azeotropes with water by removing at least 98 wt% of the water and recover at least 88 wt% of pyridine.

To get a 15% return on investments (ROI) by the third year of production, we found that the pervaporation method allowed us to pay up to $0.71/lb for the necessary feed stream, while the azeotropic distillation method gave us a flexibility of up to $0.82/lb. Using a feed value of $0.71/lb for both processes, the total capital investment (TCI) for the pervaporation process is $10.7 million with a net present value (NPV) of $1.8 million, while the TCI for azeotropic distillation is $7.0 million with a NPV of $6.4 million. Taking both the finished goods quality specifications and economic profitability into account for our design project, we would recommend the azeotropic distillation process in recovering the most purified product.



Date Posted: 14 December 2010