Document Type
Technical Report
Date of this Version
2009
Publication Source
PLoS Computational Biology
Volume
5
Issue
12
Start Page
e1000593
DOI
10.1371/journal.pcbi.1000593
Abstract
Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialities) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.
Copyright/Permission Statement
© 2009 Angly et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Recommended Citation
Angly, F. E., Willner, D., Prieto-Davó, A., Edwards, R. A., Schmeider, R., Thurber, R. L., Antonopoulos, D. A., Barott, K., Cottrell, M. T., Desnues, C., Dinsdale, E. A., Furlan, M., Haynes, M., Henn, M. R., Hu, Y., Kirchman, D. L., McDole, T., McPherson, J. D., Meyer, F., Miller, R. M., Mundt, E., Naviaux, R. K., Rodriguez-Mueller, B., Stevens, R., Wegley, L., Zhang, L., Zhu, B., & Rohwer, F. (2009). The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes. PLoS Computational Biology, 5 (12), e1000593-. http://dx.doi.org/10.1371/journal.pcbi.1000593
Included in
Biology Commons, Ecology and Evolutionary Biology Commons, Genetics and Genomics Commons, Microbiology Commons
Date Posted: 04 October 2017
This document has been peer reviewed.
Comments
At the time of this publication, Dr. Barott was affiliated with San Diego State University, but she is now a faculty member at the University of Pennsylvania.