Departmental Papers (BE)

Document Type

Conference Paper

Date of this Version

May 2006


We present a simple silicon circuit for modeling voltage-dependent ion channels found within neural cells, capturing both the gating particle's sigmoidal activation (or inactivation) and the bell-shaped time constant. In its simplest form, our ion-channel analog consists of two MOS transistors and a unity-gain inverter. We present equations describing its nonlinear dynamics and measurements from a chip fabricated in a 0.25 /spl µ/m CMOS process. The channel analog's simplicity allows tens of thousands to be built on a single chip, facilitating the implementation of biologically realistic models of neural computation.


Copyright 2006 IEEE. Reprinted from Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2006), May 2006, 4 pages.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to By choosing to view this document, you agree to all provisions of the copyright laws protecting it.



Date Posted: 29 August 2007

This document has been peer reviewed.