Departmental Papers (ASC)
Document Type
Technical Report
Date of this Version
2006
Publication Source
Development
Volume
133
Start Page
4485
Last Page
4493
DOI
10.1242/dev.02619
Abstract
At the peripheral neuromuscular junction (NMJ), a significant number of nicotinic acetylcholine receptors (AChRs) recycle back into the postsynaptic membrane after internalization to intermingle with not-yet-internalized `pre-existing' AChRs. However, the way in which these receptor pools are maintained and regulated at the NMJ in living animals remains unknown. Here, we demonstrate that recycled receptors in functional synapses are removed approximately four times faster than pre-existing receptors, and that most removed recycled receptors are replaced by new recycled ones. In denervated NMJs, the recycling of AChRs is significantly depressed and their removal rate increased, whereas direct muscle stimulation prevents their loss. Furthermore, we show that protein tyrosine phosphatase inhibitors cause the selective accumulation of recycled AChRs in the peri-synaptic membrane without affecting the pre-existing AChR pool. The inhibition of serine/threonine phosphatases, however, has no effect on AChR recycling. These data show that recycled receptors are remarkably dynamic, and suggest a potential role for tyrosine dephosphorylation in the insertion and maintenance of recycled AChRs at the postsynaptic membrane. These findings may provide insights into long-term recycling processes at less accessible synapses in the central nervous system in vivo.
Copyright/Permission Statement
Originally published in Development © 2006 The Company of Biologists. Reproduced with permission.
Keywords
recycling, receptor dynamics, half-life, phosphorylation, synaptic activity
Recommended Citation
Bruneau, E., & Akaaboune, M. (2006). The Dynamics of Recycled Acetylcholine Receptors at the Neuromuscular Junction in vivo. Development, 133 4485-4493. https://doi.org/10.1242/dev.02619
Included in
Biological Psychology Commons, Communication Commons, Molecular and Cellular Neuroscience Commons, Neurology Commons, Neurosciences Commons
Date Posted: 15 June 2018
This document has been peer reviewed.