Marketing Papers

Document Type

Journal Article

Date of this Version

April 2001

Comments

Postprint version. Published in International Journal of Forecasting, Volume 17, Issue 2, April 2001, pages 143-157.
Publisher URL:http://dx.doi.org/10.1016/S0169-2070(01)00079-6

Abstract

Rule-based forecasting (RBF) is an expert system that uses features of time series to select and weight extrapolation techniques. Thus, it is dependent upon the identification of features of the time series. Judgmental coding of these features is expensive and the reliability of the ratings is modest. We developed and automated heuristics to detect six features that had previously been judgmentally identified in RBF: outliers, level shifts, change in basic trend, unstable recent trend, unusual last observation, and functional form. These heuristics rely on simple statistics such as first differences and regression estimates. In general, there was agreement between automated and judgmental codings for all features other than functional form. Heuristic coding was more sensitive than judgment and consequently, identified more series with a certain feature than judgmental coding. We compared forecast accuracy using automated codings with that using judgmental codings across 122 series. Forecasts were produced for six horizons, resulting in a total of 732 forecasts. Accuracy for 30% of the 122 annual time series was similar to that reported for RBF. For the remaining series, there were as many that did better with automated feature detection as there were that did worse. In other words, the use of automated feature detection heuristics reduced the costs of using RBF without negatively affecting forecast accuracy.

Share

COinS
 

Date Posted: 14 June 2007

This document has been peer reviewed.