Lab Papers (GRASP)

Document Type

Conference Paper

Date of this Version

4-2005

Comments

Suggested Citation:
Fainekos, G., H. Kress-Gazit and G.J. Pappas. (2005). "Temporal Logic Motion Planning for Mobile Robts." Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain. April 2005.

©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Abstract

In this paper, we consider the problem of robot motion planning in order to satisfy formulas expressible in temporal logics. Temporal logics naturally express traditional robot specifications such as reaching a goal or avoiding an obstacle, but also more sophisticated specifications such as sequencing, coverage, or temporal ordering of different tasks. In order to provide computational solutions to this problem, we first construct discrete abstractions of robot motion based on some environmental decomposition. We then generate discrete plans satisfying the temporal logic formula using powerful model checking tools, and finally translate the discrete plans to continuous trajectories using hybrid control. Critical to our approach is providing formal guarantees ensuring that if the discrete plan satisfies the temporal logic formula, then the continuous motion also satisfies the exact same formula.

Keywords

Motion planning, temporal logics, model checking, discrete abstrations, hybrid control

 

Date Posted: 12 October 2010

This document has been peer reviewed.