Achieving Near-Optimal Traffic Engineering Solutions for Current OSPF/IS-IS Networks
Penn collection
Degree type
Discipline
Subject
networks
traffic engineering
aggregation
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
Traffic engineering is aimed at distributing traffic so as to "optimize" a given performance criterion. The ability to carry out such an optimal distribution depends on both the routing protocol and the forwarding mechanisms in use in the network. In IP networks running the OSPF or IS-IS protocols, routing is over shortest paths, and forwarding mechanisms are constrained to distributing traffic uniformly over equal cost shortest paths. These constraints often make achieving an optimal distribution of traffic impossible. In this paper, we propose and evaluate an approach, based on manipulating the set of next hops for routing prefixes, that is capable of realizing near optimal traffic distribution without any change to existing routing protocols and forwarding mechanisms. In addition, we explore the tradeoff that exists between performance and the overhead associated with the additional configuration steps that our solution requires. The paper’s contributions are in formulating and evaluating an approach to traffic engineering for existing IP networks that achieves performance levels comparable to that offered when deploying other forwarding technologies such as MPLS.