Quantitative Methods For Guiding Epilepsy Surgery From Intracranial Eeg

Loading...
Thumbnail Image
Degree type
Doctor of Philosophy (PhD)
Graduate group
Bioengineering
Discipline
Subject
Epilepsy
Neuroengineering
Neurosurgery
Biomedical
Neuroscience and Neurobiology
Funder
Grant number
License
Copyright date
2022-09-17T20:21:00-07:00
Distributor
Related resources
Author
Bernabei, John
Contributor
Abstract

Despite advances in intracranial EEG (iEEG) technique, technology and neuroimaging, patients today are no more likely to achieve seizure freedom after epilepsy surgery than they were 20 years ago. These poor outcomes are in part due to the difficulty and subjectivity associated with interpreting iEEG recordings, and have led to widespread interest in developing quantitative methods to localize the epileptogenic zone. Approaches to computational iEEG analysis vary widely, spanning studies of both seizures and interictal periods, and encompassing a range of techniques including electrographic signal analysis and graph theory. However, many current methods often fail to generalize to new data and are sensitive to differences in pathology and electrode placement. Indeed, none have completed prospective clinical trials. In this dissertation, I develop and validate tools for guiding epilepsy surgery through the quantitative analysis of intracranial EEG. Specifically, I leverage methods from graph theory for mapping network synchronizability to predict surgical outcome from ictal recordings, and also investigate the effects of sampling bias on network models. Finally, I construct a normative intracranial EEG atlas as a framework for objectively identifying patterns of abnormal neural activity and connectivity. Overall, the methods and results of this dissertation support the implementation of quantitative iEEG analysis in epilepsy surgical evaluation.

Advisor
Brian Litt
Date of degree
2021-01-01
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation